hybrid filler
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 115)

H-INDEX

26
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 338
Author(s):  
Paulina Jakubowska ◽  
Grzegorz Borkowski ◽  
Dariusz Brząkalski ◽  
Bogna Sztorch ◽  
Arkadiusz Kloziński ◽  
...  

This paper presents the impact of accelerated aging on selected mechanical and thermal properties of isotactic polypropylene (iPP) composites filled with sedimentary hybrid natural filler-Opoka rock. The filler was used in two forms: an industrial raw material originating as a subsieve fraction natural material, and a rock calcinated at 1000 °C for production of phosphorous sorbents. Fillers were incorporated with constant amount of 5 wt % of the resulting composite, and the material was subjected to accelerated weathering tests with different exposition times. The neat polypropylene and composites with calcium carbonate as a reference filler material were used for comparison. The aim of the research was to determine the possibility of using the Opoka rock as a new hybrid filler for polypropylene, which could be an alternative to the widely used calcium carbonate and silica. The thermal, mechanical, and structural properties were evaluated by means of differential scanning calorimetry (DSC), tensile tests, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR/ATR) prior to and after accelerated aging. As a result, it was found that the composites of polypropylene with Opoka were characterized by similar or higher functional properties and higher resistance to photodegradation compared to composites with conventional calcium carbonate. The results of measurements of mechanical properties, structural and surface changes, and the carbonyl index as a function of accelerated aging proved that Opoka was an effective ultraviolet (UV) stabilizer, significantly exceeding the reference calcium carbonate in this respect. The new hybrid filler of natural origin in the form of Opoka can therefore be used not only as a typical powder filler, but above all as a UV blocker/stabilizer, thus extending the life of polypropylene composites, especially for outdoor applications.


2021 ◽  
Author(s):  
Nagaprasad Nagaraj ◽  
VigneshVenkataraman Venkataraman ◽  
Karthik Babu NB ◽  
Stalin Balasubramaniam ◽  
Leta Tesfaye Jule ◽  
...  

Abstract The need of eco-friendly materials has been attracted due to renewability, abundance availability, low cost, and so on. Therefore, the search for bio fillers for the production of bio-based composite materials is gaining more and more attention in both academic and industry circles because it promotes sustainability. The present study represents the utilization of biomass solid waste in the hybrid form of tamarind seed and date seed powder into polymer reinforced composite which has been explored for the first time by a compression molding technique. These fillers are bio-waste that can be obtained at a minimal cost from renewable sources. An attempt has been made to use these hybrid fillers to reinforce with the matrix ranging from 0 to 50 wt.%, and their physical, mechanical, and thermal properties were investigated. In general, the inclusion of hybrid fillers increases mechanical properties, although the addition of hybrid fillers had only a minor impact on thermal properties. When compared to the pure vinyl ester resin, the hybrid fillers reinforced composites revealed a significant improvement in tensile, flexural, impact, and hardness properties, with improvements of 1.51 times, 1.44 times, 1.87 times, and 1.46 times respectively, at 10 wt.% filler loading. Filler matrix interaction of fractured mechanical testing samples was analyzed by scanning electron microscope. Based on the findings, hybrid filler reinforced composites may be suitable for applications where cost is a consideration and where minor compromises in thermal qualities are acceptable.


2021 ◽  
Vol 11 (23) ◽  
pp. 11410
Author(s):  
Gea Prioglio ◽  
Silvia Agnelli ◽  
Stefano Pandini ◽  
Maurizio Galimberti

Silica-based rubber composites have tremendous importance, as they allow the reduction in hysteresis in demanding dynamic-mechanical applications such as tire compounds and hence have a lower environmental impact. However, they also present drawbacks such as poor rheological behavior. In this work, an innovative silica-based hybrid filler system was developed, obtaining a rubber composite with an improved set of properties. A nanosized high surface area graphite (HSAG) was functionalized with 2-(2,5-dimethyl-1H-pyrrol-1-yl)propane-1,3-diol, serinol pyrrole (SP), through a simple process characterized by a high carbon efficiency. The HSAG-SP adduct, with about nine parts of SP per hundred parts of carbon filler, was used to form a hybrid filler system with silica. An elastomeric composite, with poly(styrene-co-butadiene) from anionic polymerization and poly(1,4-cis-isoprene) from Hevea brasiliensis was prepared with 50 parts of silica, which was replaced in a minor amount (15%) by either pristine HSAG or HSAG-SP. The best set of composite properties was obtained with HSAG-SP: the same dynamic rigidity and hysteresis and tensile properties of the silica-based material and appreciably better rheological properties, particularly in terms of flowability. This work paves the way for a new generation of silica-based composites, with improved properties, based on a hybrid filler system with a nanosized edge functionalized graphite.


2021 ◽  
Vol 6 ◽  
pp. 100171
Author(s):  
Miaomiao Qian ◽  
Bo Zou ◽  
Yafei Shi ◽  
Yunhe Zhang ◽  
Xiaofeng Wang ◽  
...  

AppliedChem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 90-110
Author(s):  
Robert E. Przekop ◽  
Paulina Jakubowska ◽  
Bogna Sztorch ◽  
Rafał Kozera ◽  
Kamil Dydek ◽  
...  

The work presents a comprehensive profile of the physicochemical characteristics of opoka sedimentary rock in the context of its use as a hybrid filler for thermoplastics. Determining the functional parameters of the studied filler was the main aim of this research. Thermal treatment leads to changes in its morphology and phase composition. A wide range of physicochemical techniques was used, such as low-temperature nitrogen adsorption, FT-IR, TGA, XRD, optical, and electron microscopy. The susceptibility of the material to micronisation was also tested (ball milling). Due to its widespread occurrence, opoka can be an attractive alternative to fillers such as silica or chalk. In order to verify this statement, polypropylene composites thereof were prepared by melt blending and injection molding, and studied by mechanical testing and microscopic imaging.


Author(s):  
Akaporn Limtrakul ◽  
Pongdhorn Sae-Oui ◽  
Manuchet Nillawong ◽  
Chakrit Sirisinha

Influence of carbon black (CB)/precipitated silica (SiO2) hybrid ratio on properties of a passenger car tire (PCT) sidewall based on natural rubber (NR) and butadiene rubber (BR) blend was investigated. Rubbers filled with various hybrid filler ratios at a constant loading of 50 phr were prepared and tested. The filler reinforcement efficiency in association with crucial properties of the tire sidewall were of interest. Results show the enhanced rubber–filler interaction with increasing SiO2 fraction leading to the improvement in many vulcanizate properties including hardness, tensile strength, tear strength and fatigue resistance, at the expense of cure efficiency and hysteretic behaviors (i.e., reduced heat build-up resistance and increased dynamic set). The results also suggest the improvement in tire sidewall performance of the NR/BR vulcanizates reinforced with CB/SiO2 hybrid filler, compared to that of the CB-filled vulcanizate.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6813
Author(s):  
Kyoungho Song ◽  
Hansol Son ◽  
Suwon Park ◽  
Jonghan Lee ◽  
Jungsik Jang ◽  
...  

In this study, 3D-printable flexible piezoresistive composites containing various amounts of cilia-like hybrid fillers were developed. In the hybrid fillers, micro-scale Cu particles with a 0D structure may allow them to easily disperse into the flexible TPU matrix. Furthermore, nanoscale multi-walled carbon nanotubes (MWCNTs) with a high aspect ratio, present on the surface of the Cu particles, form an electrical network when the polymer matrix is strained, thus providing good piezoresistive performance as well as good flowability of the composite materials. With an optimal hybrid filler content (17.5 vol.%), the 3D-printed piezoresistive composite exhibits a gauge factor of 6.04, strain range of over 20%, and durability of over 100 cycles. These results highlight the potential applications of piezoresistive pressure sensors for health monitoring, touch sensors, and electronic skin.


Sign in / Sign up

Export Citation Format

Share Document