Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results

2011 ◽  
Vol 377 (1-2) ◽  
pp. 75-81 ◽  
Author(s):  
Jason K. Ward ◽  
William J. Koros
Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 862
Author(s):  
Chhabilal Regmi ◽  
Saeed Ashtiani ◽  
Zdeněk Hrdlička ◽  
Karel Friess

This study explored the underlying synergy between titanium dioxide nanotube (TNT) and carbon nanotube (CNT) hybrid fillers in cellulose triacetate (CTA)-based mixed matrix membranes (MMMs) for natural gas purification. The CNT@TNT hybrid nanofillers were blended with CTA polymer and cast as a thin film by a facile casting technique, after which they were used for single gas separation. The hybrid filler-based membrane depicted a higher CO2 uptake affinity than the single filler (CNT/TNT)-based membrane. The gas separation results indicate that the hybrid fillers (TNT@CNT) are strongly selective for CO2 over CH4 and H2 over CH4. The increment in the CO2/CH4 and H2/CH4 selectivities compared to the pristine CTA membrane was 42.98 from 25.08 and 48.43 from 36.58, respectively. Similarly, the CO2 and H2 permeability of the CTA-TNT@CNT membrane increased by six- and five-fold, respectively, compared to the pristine CTA membrane. Such significant improvements in CO2/CH4 and H2/CH4 separation performance and thermal and mechanical properties suggest a feasible and practical approach for potential biogas upgrading and natural gas purification.


2020 ◽  
Vol 43 (11) ◽  
pp. 2167-2180
Author(s):  
Seyed Mohammdhadi Mousavi ◽  
Ahmadreza Raisi ◽  
Hamid Hashemi Moghaddam ◽  
Mohammad Salehi Maleh

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2539
Author(s):  
Sipei Li ◽  
Yang Liu ◽  
Dana A. Wong ◽  
John Yang

Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other’s drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials’ preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.


Sign in / Sign up

Export Citation Format

Share Document