scholarly journals Ambivalent Role of Annealing in Tensile Properties of Step-Rolled Ti-6Al-4V with Ultrafine-Grained Structure

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 684
Author(s):  
Geonhyeong Kim ◽  
Taekyung Lee ◽  
Yongmoon Lee ◽  
Jae Nam Kim ◽  
Seong Woo Choi ◽  
...  

Step rolling can be used to mass-produce ultrafine-grained (UFG) Ti-6Al-4V sheets. This study clarified the effect of subsequent annealing on the tensile properties of step-rolled Ti-6Al-4V at room temperature (RT) and elevated temperature. The step-rolled alloy retained its UFG structure after subsequent annealing at 500–600 °C. The RT ductility of the step-rolled alloy increased regardless of annealing temperature, but strengthening was only attained by annealing at 500 °C. In contrast, subsequent annealing rarely improved the elevated-temperature tensile properties. The step-rolled Ti-6Al-4V alloy without the annealing showed the highest elongation to failure of 960% at 700 °C and a strain rate of 10−3 s−1. The ambivalent effect of annealing on RT and elevated-temperature tensile properties is a result of microstructural features, such as dislocation tangles, subgrains, phases, and continuous dynamic recrystallization.

Sign in / Sign up

Export Citation Format

Share Document