scholarly journals Actuating a Magnetic Shape Memory Element Locally with a Set of Coils

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 536
Author(s):  
Andrew Armstrong ◽  
Peter Müllner

The local actuation of a magnetic shape memory (MSM) element as used in an MSM micropump is considered. This paper presents the difference between an electromagnetic driver and a driver that uses a rotating permanent magnet. For the magnetic field energy of the permanent magnetic drive, the element takes in a significant stray field. In a particular case, energy reduction was 12.7 mJ. For an electromagnetic drive with an identical size of the MSM element, the total magnetic field energy created by the system was 2.28 mJ. Attempts to experimentally nucleate twins in an MSM element by energizing an electromagnetic drive failed even though the local magnetic field exceeded the magnetic switching field. The energy variation is an order of magnitude smaller for the electromagnetic drive, and it does not generate the necessary driving force. It was assumed in previous work that the so-called magnetic switching field presents a sufficient requirement to nucleate a twin and, thus, to locally actuate an MSM element. Here, we show that the total magnetic field energy available to the MSM element presents another requirement.

2002 ◽  
Vol 29 (10) ◽  
pp. 86-1-86-4 ◽  
Author(s):  
B. Hnat ◽  
S. C. Chapman ◽  
G. Rowlands ◽  
N. W. Watkins ◽  
W. M. Farrell

Author(s):  
Wei He ◽  
Jitao Zhang ◽  
Yueran Lu ◽  
Aichao Yang ◽  
Chiwen Qu ◽  
...  

2011 ◽  
Vol 684 ◽  
pp. 177-201 ◽  
Author(s):  
Markus Chmielus ◽  
Peter Müllner

We study the effect of surface modifications and constraints on the mechanical properties of Ni-Mn- Ga single crystals, which are imposed by (i) structural modifications near the surface, (ii) mounting to a solid surface, and (iii) guiding the stroke. Spark eroded samples were electropolished and characterized before and after each polishing treatment. Surface damage was then produced with spark erosion and abrasive wearing. Surface damage stabilizes and pins a dense twin-microstructure and prevents twins from coarsening. The density of twins increases with increasing degree of surface deformation. Twinning stress and hardening rate during mechanical loading increase with increasing surface damage and twin density. In contrast, when a damaged surface layer is removed, twinning stresses, hardening rate, and twin density decrease. Constraining the sample by mounting and guiding reduces the magnetic-field-induced strain by locking twins at the constrained surfaces. . For single-domain crystals and for hard magnetic shape-memory alloys, external constraints strongly reduce the magnetic-field-induced strain and the fatigue lifetime is short. In contrast, for selfaccommodated martensite and for soft magnetic shape-memory alloys, the twin-microstructure adapts well to external constraints and the fatigue lifetime is long. The performance of devices with MSMA transducers requires managing stress distributions through design and control of surface properties, microstructure, and constraints.


2008 ◽  
Vol 481-482 ◽  
pp. 258-261 ◽  
Author(s):  
P. Entel ◽  
M.E. Gruner ◽  
W.A. Adeagbo ◽  
A.T. Zayak

Sign in / Sign up

Export Citation Format

Share Document