scholarly journals Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin

2021 ◽  
Vol 9 (11) ◽  
pp. 2276
Author(s):  
Mohamed Abdelfattah Maky ◽  
Naoki Ishibashi ◽  
Jiro Nakayama ◽  
Takeshi Zendo

Enterocin F4-9 belongs to the glycocin family having post-translational modifications by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. In this study, the biosynthetic gene cluster of enterocin F4-9 was cloned and expressed in Enterococcus faecalis JH2-2. Production of glycocin by the JH2-2 expression strain was confirmed by expression of the five genes. The molecular weight was greater than glycocin secreted by the wild strain, E. faecalis F4-9, because eight amino acids from the N-terminal leader sequence remained attached. This N-terminal extension was eliminated after treatment with the culture supernatant of strain F4-9, implying an extracellular protease from E. faecalis F4-9 cleaves the N-terminal sequence. Thus, leader sequences cleavage requires two steps: the first via the EnfT protease domain and the second via extracellular proteases. Interestingly, the long peptide, with N-terminal extension, demonstrated advanced antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, enfC was responsible for glycosylation, a necessary step prior to secretion and cleavage of the leader peptide. In addition, enfI was found to grant self-immunity to producer cells against enterocin F4-9. This report demonstrates specifications of the minimal gene set responsible for production of enterocin F4-9, as well as a new biosynthetic mechanism of glycocins.

Gene ◽  
2001 ◽  
Vol 278 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
Antonella Morea ◽  
Kalai Mathee ◽  
Michael J. Franklin ◽  
Alessio Giacomini ◽  
Michael O'Regan ◽  
...  

Gene ◽  
1990 ◽  
Vol 90 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Danila Limauro ◽  
Alessandra Avitabile ◽  
Carmela Cappellano ◽  
Anna Maria Puglia ◽  
Carmelo B. Bruni

2002 ◽  
Vol 267 (5) ◽  
pp. 636-646 ◽  
Author(s):  
Y. Abe ◽  
T. Suzuki ◽  
C. Ono ◽  
K. Iwamoto ◽  
M. Hosobuchi ◽  
...  

2013 ◽  
Vol 97 (14) ◽  
pp. 6337-6345 ◽  
Author(s):  
Bijinu Balakrishnan ◽  
Suman Karki ◽  
Shih-Hau Chiu ◽  
Hyun-Ju Kim ◽  
Jae-Won Suh ◽  
...  

2019 ◽  
Vol 17 (3) ◽  
pp. 461-466 ◽  
Author(s):  
Taro Shiraishi ◽  
Makoto Nishiyama ◽  
Tomohisa Kuzuyama

The biosynthetic pathway of the uridine-derived nucleoside antibiotic A-94964 was proposed via in silico analysis coupled with gene deletion experiments.


2020 ◽  
Vol 16 (4) ◽  
pp. e1008281 ◽  
Author(s):  
Gregory B. Whitfield ◽  
Lindsey S. Marmont ◽  
Cedoljub Bundalovic-Torma ◽  
Erum Razvi ◽  
Elyse J. Roach ◽  
...  

2020 ◽  
Vol 83 (2) ◽  
pp. 202-209
Author(s):  
Wenqing Zhou ◽  
Haoyu Liang ◽  
Xiangjing Qin ◽  
Danfeng Cao ◽  
Xiangcheng Zhu ◽  
...  

Gene ◽  
2006 ◽  
Vol 377 ◽  
pp. 109-118 ◽  
Author(s):  
Min He ◽  
Bradley Haltli ◽  
Mia Summers ◽  
Xidong Feng ◽  
John Hucul

Sign in / Sign up

Export Citation Format

Share Document