scholarly journals Reductive Methylation of Homogeneous Primary β-Lauryl/myristyl 7/3 Polyethyleneoxy n = 3–18 Ethylamines under Phase-Transfer Catalysis Conditions

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4612
Author(s):  
Călin Jianu

Homogeneous tertiary N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAT, are niche intermediates in the synthesis of homogeneous N-alkyl (C1–C18)-N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylammonium chlorides (unitary degree of oligomerization of ethylene oxide in the polyoxyethylene chain). This paper synthetically presents the dependence of the reductive methylation yields of homogeneous primary β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAP, on the reaction time (10–90 min), the temperature (70 °C), the molar ratio formic aldehyde /LM(EO)nAP (1.1/1–2.5/1), the molar ratio HCOOH/LM(EO)nAP (5/1), the degree of oligomerization of ethylene oxide in the homogeneous polyoxyethylene chain in the 3,6,9,12,18 series, and the structure of the phase-transfer catalysts. The steric effects of hydrophobic groups CH3 and C18H37 grafted onto the ammonium function, and the micellar phenomena in the vicinity of their critical micellar concentration, directly proportional to the homogeneous degree of oligomerization, were highlighted. In all cases, a steady increase in reductive methylation yields was observed, with even quantitative values obtained. The high purity of the homologous series LM(EO)nAT will allow their personalization as reference structures for the study of the evolution of basic colloidal characteristics useful in forecasting technological applications. LM(EO)nAP were obtained either by direct amidoethylation (nucleophilic addition under basic catalysis of homogeneous lauryl/myristyl 7/3 polyethoxylated n = 3, 6, 9, 12, 18 alcohols, LM(EO)nOH, to acrylamide monomer) or by cyanoethylation of LM(EO)nOH under basic catalysis at 25–50 °C, in the presence of Fe2+ cations as oligomerization/polymerization inhibitor, followed by partial acid hydrolysis of homogeneous β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionitriles, LM(EO)nPN, to β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionamides, LM(EO)nPD, which led to LM(EO)nAP by Hoffmann degradation. Homogeneous higher tertiary polyetheramines LM(EO)nAT were structurally characterized.

2020 ◽  
Vol 17 (4) ◽  
pp. 405-411
Author(s):  
Chuan-Hui Wang ◽  
Chen-Fu Liu ◽  
Guo-Wu Rao

Oxidation reactions have emerged as one of the most versatile tools in organic chemistry. Various onium salts such as ammonium, phosphonium, arsonium, bismuthonium, tellurium have been used as phase transfer catalysts in many oxidation reactions. Certainly, considerable catalysts have been widely used in Phase-Transfer Catalysis (PTC). This review focuses on the application of PTC in various oxidation reaction. Furthermore, PTC also conforms to the concept of “Green Chemistry”. <p></p> • Oxidation has become one of the most widely used tools in organic chemistry and phase transfer catalysts has been widely used in oxidation. <p></p> • The application of phase transfer catalysts in oxidation reaction will be summarized. <p></p> • Phase transfer catalysts have important application in various oxidation reaction.


2020 ◽  
Vol 07 ◽  
Author(s):  
Neslihan Demirbas ◽  
Ahmet Demirbas

Background: Since the discovery of metal-free catalysts or organocatalysts about twenty years ago, a number of small molecules with different structures have been using to accelerate organic transformations. With the development of environmental awareness, in order to obtain highly privileged scaffolds, scientists have directed their studies towards the synthetic methodologies which minimize or preferably eliminate the formation of waste, avoid from toxic solvents and reagents and use renewable starting materials as far as possible. Methods: In this connection, the organocatalytic reactions providing efficiency and selectivity for most of case have become an endless topic in organic chemistry since several advantages from both practical and environmental standpoints. Organocatalysts supplying transformation of reactants into products with the least possible waste production have been serving to the concept of green chemistry. Results and Conclusion: Organocatalysts have been classified on the basis of their binding capacity to the substrate with covalently or noncovalent interactions involving hydrogen bonding and electrostatic interaction. Diverse types of small organic compounds including proline and its derivatives, phase-transfer catalysts, (thio)urease, phosphoric acids, sulfones, N-oxides, guanidines, cinchona derivatives, aminoindanol and amino acids have been utilized as hydrogen bonding organocatalysts in different chemical transformations.


Sign in / Sign up

Export Citation Format

Share Document