ethylene oxide
Recently Published Documents


TOTAL DOCUMENTS

9660
(FIVE YEARS 741)

H-INDEX

144
(FIVE YEARS 16)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Aleksandra Kowalska ◽  
Louise Manning

Sesame seeds within the European Union (EU) are classified as foods not of animal origin. Two food safety issues associated with sesame seeds have emerged in recent years, i.e., Salmonella contamination and the presence of ethylene oxide. Fumigation with ethylene oxide to reduce Salmonella in seeds and spices is not approved in the EU, so its presence in sesame seeds from India was a sentinel incident sparking multiple trans-European product recalls between 2020–2021. Following an interpretivist approach, this study utilises academic and grey sources including data from the EU Rapid Alert System for Food and Feed (RASFF) database to inform a critical appraisal of current EU foods not of animal origin legislation and associated governance structures and surveillance programs. This is of particular importance as consumers are encouraged towards plant-based diets. This study shows the importance of collaborative governance utilizing data from company testing and audits as well as official regulatory controls to define the depth and breadth of a given incident in Europe. The development of reflexive governance supported by the newest technology (e.g., blockchain) might be of value in public–private models of food safety governance. This study contributes to the literature on the adoption of risk-based food safety regulation and the associated hybrid public–private models of food safety governance where both regulators and private organizations play a vital role in assuring public health.


2022 ◽  
Author(s):  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 466
Author(s):  
Vamshi K. Chidara ◽  
Yves Gnanou ◽  
Xiaoshuang Feng

The anionic ring-opening copolymerization (ROCOP) of epoxides, namely of ethylene oxide (EO), with anhydrides (AH) generally produces strictly alternating copolymers. With triethylborane (TEB)-assisted ROCOP of EO with AH, statistical copolymers of high molar mass including ether and ester units could be obtained. In the presence of TEB, the reactivity ratio of EO (rEO), which is normally equal to 0 in its absence, could be progressively raised to values lower than 1 or higher than 1. Conditions were even found to obtain rEO equal or close to 1. Samples of P(EO-co-ester) with minimal compositional drift could be synthesized; upon basic degradation of their ester linkages, these samples afforded poly(ethylene oxide) (PEO) diol samples of narrow molar mass distribution. In other cases where rEO were lower or higher than 1, the PEO diol samples eventually isolated after degradation exhibited a broader distribution of molar masses because of the compositional drift of initial P(EO-co-ester) samples.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Ganesan Shanmgam ◽  
Vinod Mathew ◽  
Balamurugan Selvaraj ◽  
Pushpa Malini Thanikachalam ◽  
Jaekook Kim ◽  
...  

ACS Omega ◽  
2022 ◽  
Author(s):  
Amna M. I. Rabie ◽  
Ahmed S. M. Ali ◽  
Munir A. Al-Zeer ◽  
Ahmed Barhoum ◽  
Salwa EL-Hallouty ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
pp. 282-293
Author(s):  
Maryam Poostchi ◽  
Hamed Bagheri

The use of phthalates as a plasticizer in plasticized polyvinyl chloride (PVC) always poses the threat of migration of phthalates into the environment through medical equipment. Phthalates can be used with natural-based plasticizers, such as Epoxidized soybean oil (ESBO) known as phthalate’s scavenger and PVC stabilizers. PVC formulations were characterized by different combinations of di (2-ethylhexyl) phthalate (DEHP) 30-40% with 5% ESBO. PVC flexibility increased significantly in the presence of ESBO, without a change in strength (tensile test). The decrease of the Tg temperature by adding ESBO in Differential Scanning Calorimetry indicated that ESBO preserved DEHP in the polymer. Also, it was shown that the sterilization process with Ethylene Oxide, similar to ESBO, decreased the Tg of polymer. DEHP migration was evaluated at a maximum level to the environment using the Gas Chromatography test. Samples containing ESBO showed less hemolysis. ABSTRAK: Penggunaan phthalates sebagai plasticizer dalam plastik polyvinyl chloride (PVC) selalu menimbulkan ancaman penghijrahan phthalates ke alam sekitar melalui peralatan perubatan. Phthalates boleh digunakan dengan plasticizer berasaskan semula jadi, seperti minyak kacang soya Epoxidized (ESBO) yang dikenali sebagai pemulung phthalate dan penstabil PVC. Formulasi PVC dicirikan oleh kombinasi yang berbeza di (2-ethylhexyl) phthalate (DEHP) 30-40% dengan 5% ESBO. Fleksibiliti PVC meningkat dengan ketara di hadapan ESBO, tanpa perubahan kekuatan (ujian tegangan). Penurunan suhu Tg dengan menambahkan ESBO dalam Calorimetri Pengimbasan Berbeza menunjukkan bahawa ESBO mengekalkan DEHP dalam polimer. Juga, ditunjukkan bahawa proses pensterilan dengan Etilena Oksida, serupa dengan ESBO, menurunkan Tg polimer. Penghijrahan DEHP dinilai pada tahap maksimum ke lingkungan menggunakan uji Kromatografi Gas. Sampel yang mengandungi ESBO menunjukkan kurang hemolisis. 


2022 ◽  
Vol 58 (4) ◽  
pp. 37-46
Author(s):  
Abeer Adaileh ◽  
Mohammed Al-Tweissi ◽  
Husam Miqdad

The electrical properties of conductive carbon black (CB) nanoparticles (0.1wt percent) doped thin films made of poly(ethylene oxide) (PEO) filled with varying amounts of the electrolyte potassium alum salt and doped with conductive carbon black (CB) nanoparticles (0.1wt percent) have been investigated. The dependence of the activation energy of the composites on frequency, temperature, and filler content was studied using the AC impedance technique. The current research looked at how activation energy changed with frequency (200-1000 kHz) and temperature (30-55oC) for composites with varied potassium alum salt concentrations: 0, 2, 4, 8, 12, and 16 wt. percent. The activation energy (Ea) values measured exhibited frequency, temperature, and filler content relationships. According to polarization processes, the activation energy of the produced sheets decreases with the potassium alum salt content in the composite and decreases with the temperature. With increasing frequency, the activation energy of the produced thin films decreases.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Maria Demeter ◽  
Ion Călina ◽  
Anca Scărișoreanu ◽  
Marin Micutz

In the present study, we report on the complex hydrogels formulations based on collagen-poly(vinyl pyrrolidone) (PVP)-poly(ethylene oxide) (PEO) cross-linked by e-beam irradiation in an aqueous polymeric solution, aiming to investigate the influence of different PEO concentrations on the hydrogel properties. The hydrogel networks’ structure and their composition were investigated using equilibrium swelling degree, complex rheological analysis, and FT-IR spectroscopy. Rheological analysis was performed to determine the elastic (G′) and viscous (G″) moduli, the average molecular weight between cross-linking points (Mc), cross-link density (Ve), and the mesh size (ξ). The effect of the PEO concentration on the properties of the hydrogel was investigated as well. Depending on the PEO concentration added in their composition, the hydrogels swelling degree depends on the absorbed dose, being lower at low PEO concentrations. All hydrogel formulations showed higher G′ values (9.8 kPa) compared to G″ values (0.2 kPa), which shows that the hydrogels have a predominantly elastic behavior. They presented stability greater than 72 h in physiological pH buffers and reached equilibrium after 25 h. The Mc parameter is strongly dependent on the PEO concentration and the absorbed dose for all hydrogel compositions. The cross-linking density increased with the absorbed dose.


Sign in / Sign up

Export Citation Format

Share Document