graft copolymers
Recently Published Documents


TOTAL DOCUMENTS

2101
(FIVE YEARS 152)

H-INDEX

72
(FIVE YEARS 6)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Xiaohong Liu ◽  
Hui Yin ◽  
Xia Song ◽  
Zhongxing Zhang ◽  
Jun Li

Lignin is a natural renewable biomass resource with great potential for applications, while its development into high value-added molecules or materials is rare. The development of biomass lignin as potential nonviral gene delivery carriers was initiated by our group through the “grafting-from” approach. Firstly, the lignin was modified into macroinitiator using 2-bromoisobutyryl bromide. Then cationic polymer chains of poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) were grown from the lignin backbone using atom transfer radical polymerization (ATRP) to yield lignin-PDMAEMA graft copolymers (LPs) with branched structure. To gain a deep understanding of the relationship between the nonviral gene transfection efficiency of such copolymers and their structural and compositional factors, herein eight lignin-based macroinitiators with different modification degrees (MDs, from 3.0 to 100%) were synthesized. Initiated by them, a series of 20 LPs were synthesized with varied structural factors such as grafting degree (GD, which is equal to MD, determining the cationic chain number per lignin macromolecule), cationic chain length (represented by number of repeating DMAEMA units per grafted arm or degree of polymerization, DP) as well as the content of N element (N%) which is due to the grafted PDMAEMA chains and proportional to molecular weight of the LPs. The in vitro gene transfection capability of these graft copolymers was evaluated by luciferase assay in HeLa, COS7 and MDA-MB-231cell lines. Generally, the copolymers LP-12 (N% = 7.28, MD = 36.7%, DP = 13.6) and LP-14 (N% = 6.05, MD = 44.4%, DP = 5.5) showed good gene transfection capabilities in the cell lines tested. Overall, the performance of LP-12 was the best among all the LPs in the three cell lines at the N/P ratios from 10 to 30, which was usually several times higher than PEI standard. However, in MDA-MB-231 at N/P ratio of 30, LP-14 showed the best gene transfection performance among all the LPs. Its gene transfection efficiency was ca. 11 times higher than PEI standard at this N/P ratio. This work demonstrated that, although the content of N element (N%) which is due to the grafted PDMAEMA chains primarily determines the gene transfection efficiency of the LPs, it is not the only factor in explaining the performance of such copolymers with the branched structure. Structural factors of these copolymers such as grafting degree and cationic chain length could have a profound effect on the copolymer performance on gene transfection efficiency. Through carefully adjusting these factors, the gene transfection efficiency of the LPs could be modulated and optimized for different cell lines, which could make this new type of biomass-based biomaterial an attractive choice for various gene delivery applications.


2022 ◽  
pp. 301-322
Author(s):  
Md Saquib Hasnain ◽  
Sanjay Dey ◽  
Amit Kumar Nayak

2021 ◽  
Vol 37 (6) ◽  
pp. 1350-1358
Author(s):  
Mirvari Khalig Hasanova

Graft copolymers of natural polysaccharides chitosan (Chs), gummi-arabic (GA) and arabinogalactan (AG) were synthesized with N-vinylpyrrolidone (VPr) (4-vinylpyridine and N-vinylpyrrolidone used as comonomers for chitosan grafting), and then pH-sensitive hydrogels were designing by cross-linked them with N,N-methylene-bis-acrylamide. Effective sorption of doxycycline from aqueous solutions with water-swelling gels has been studied experimentally. The effect of gel dose, initial concentration of doxycycline, pH medium and solution ionic strength of the sorption rate and capacity of the antibiotic was systematically studied. The surface and volume absorption kinetics and isotherms of the process have also been investigated. It was found that the max sorption capacity for swellable gels varies between Chs-graft-VPr/4VPAG/graft-VPrGA/graft-VPr. It has been shown that the sorption mechanism is mainly dominated by physical sorption and to some extent hydrogen bonds and electrostatic interactions.


Author(s):  
A. D. Moroz ◽  
S. S. Dryabina ◽  
M. A. Vaniev ◽  
Zh. N. Malysheva ◽  
I. A. Novakov

In this work, graft copolymers of chitosan with trimethylmethacryloxyethylammonium methyl sulfate were synthesized by the method of controlled radical polymerization, and it was found that replacing the dimethylformamide aprotic solvent with water increases the degree of grafting. With the aim of the possible use of chitosan copolymers as a functional component for regulating the water-swelling properties of elastomers, the kinetics of swelling of the samples was investigated. An increase in the degree of swelling of the copolymers in comparison with the initial chitosan was revealed, and the influence of the molecular weight and the conditions of their synthesis was established.


2021 ◽  
pp. 1-19
Author(s):  
Kazunori Kataoka ◽  
Teruo Okano ◽  
Yasuhisa Sakurai ◽  
Atsushi Maruyama ◽  
Teiji Tsuruta

2021 ◽  
Vol 939 (1) ◽  
pp. 012075
Author(s):  
S Karimov ◽  
A Rafikov ◽  
N Nabiev

Abstract Certain physicochemical properties of the synthesized graft copolymers of raw skin collagen and natural silk fibroin with polyacrylic acid have been determined. The dependence of the solubility, density, and thermal properties of copolymers on the ratio of components and synthesis conditions has been established.


Author(s):  
Andrey V. Sorokin ◽  
Marina G. Kholyavka ◽  
Maria S. Lavlinskaya

The aim of this work is to synthesise chitosan and N-vinylimidazole graft-copolymers of various compositions and to study the properties of their aqueous solutions.Chitosan and N-vinylimidazole graft-copolymers were obtained by solution polymerisation in the presence of a ceric ammonium nitrate redox initiator. The synthesised graft copolymers were characterised by FTIR to determine their compositions and the grafted side chains of poly-N-vinylimidazole were characterised by gel permeation chromatography to determine their molecular wights and polydispersity indices. It was established that the obtained products are characterised by high values of yield and grafting efficiency and low values of the polydispersity index. It was found that when the content of the N-vinylimidazole links is above 57 wt%, the synthesised graft copolymers are water-soluble. Aqueous solutions of the obtained copolymers were characterised using dynamic light scattering, transmission electron microscopy, and laserDoppler microelectrophoresis. The study showed that macromolecules of graft copolymers in aqueous solutions have stimuli-sensitive properties with respect to the medium reaction and at a concentration above 10–2 wt% are characterised by a tendency to self-association forming core-crown aggregates, the geometry of which depends on the molecular masses of the grafted chains. Associates of macromolecules in solutions are characterised by positive values of the electrokinetic potential, the values of which also depend on the medium reaction. Thus, it was found that the ceric ammonium nitrate initiator allows obtaining chitosan and N-vinylimidazole graft-copolymers showing stimuli-sensitive properties in aqueous solutions and prone to self-association at concentrations above 10–2 wt%.


CCS Chemistry ◽  
2021 ◽  
pp. 1-34
Author(s):  
Kairui Guo ◽  
Shaoqiao Li ◽  
Gong Chen ◽  
Jirong Wang ◽  
Yong Wang ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 792
Author(s):  
Raagala Vijitha ◽  
Nagella Sivagangi Reddy ◽  
Kasula Nagaraja ◽  
Tiruchuru J. Sudha Vani ◽  
Marlia M. Hanafiah ◽  
...  

In this study, a simple method for the fabrication of highly diffusive, adsorptive and conductive eco-friendly polyelectrolyte membranes (PEMs) with sulfonate functionalized pectin and poly(vinyl alcohol)(PVA) was established. The graft-copolymers were synthesized by employing the use of potassium persulfate as a free radical initiator from pectin (PC), a carbohydrate polymer with 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulphonate (SVBS). The PEMs were fabricated from the blends of pectin graft-copolymers (PC-g-AMPS and PC-g-SVBS) and PVA by using a solution casting method, followed by chemical crosslinking with glutaraldehyde. The composite PEMs were fabricated by mixing phosphomolybdic acid with the aforementioned blends. The PEMs were successfully characterized by FTIR, XRD, SEM, and EDAX studies. They were assessed for the controlled release of an anti-cancer drug (5-fluorouracil) and the removal of toxic metal ions (Cu2+) from aqueous media. Furthermore, the composite PEMs were evaluated for fuel cell application. The 5-fluorouracil release capacity of the PEMs was found to be 93% and 99.1% at 300 min in a phosphate buffer solution (pH = 7.4). The highest Cu2+ removal was observed at 206.7 and 190.1 mg/g. The phosphomolybdic acid-embedded PEMs showed superior methanol permeability, i.e., 6.83 × 10−5, and 5.94 × 10−5, compared to the pristine PEMs. Furthermore, the same trend was observed for the proton conductivities, i.e., 13.77 × 10−3, and 18.6 × 10−3 S/cm at 30 °C.


Sign in / Sign up

Export Citation Format

Share Document