scholarly journals Ab Initio Study of Fine and Hyperfine Interactions in Triplet POH

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 302
Author(s):  
Luca Bizzocchi ◽  
Silvia Alessandrini ◽  
Mattia Melosso ◽  
Víctor M. Rivilla ◽  
Cristina Puzzarini

Phosphorous-containing molecules have a great relevance in prebiotic chemistry in view of the fact that phosphorous is a fundamental constituent of biomolecules, such as RNA, DNA, and ATP. Its biogenic importance has led astrochemists to investigate the possibility that P-bearing species could have formed in the interstellar medium (ISM) and subsequently been delivered to early Earth by rocky bodies. However, only two P-bearing molecules have been detected so far in the ISM, with the chemistry of interstellar phosphorous remaining poorly understood. Here, in order to shed further light on P-carriers in space, we report a theoretical spectroscopic characterisation of the rotational spectrum of POH in its 3A″ ground electronic state. State-of-the-art coupled-cluster schemes have been employed to derive rotational constants, centrifugal distortion terms, and most of the fine and hyperfine interaction parameters, while the electron spin–spin dipolar coupling has been investigated using the multi-configuration self-consistent-field method. The computed spectroscopic parameters have been used to simulate the appearance of triplet POH rotational and ro-vibrational spectra in different conditions, from cold to warm environments, either in gas-phase experiments or in molecular clouds. Finally, we point out that the predicted hyperfine structures represent a key pattern for the recognition of POH in laboratory and interstellar spectra.

1991 ◽  
Vol 46 (11) ◽  
pp. 989-992 ◽  
Author(s):  
N. Heineking ◽  
J.-U. Grabow ◽  
K. Vormann ◽  
W. Stahl

AbstractNuclear quadrupole hyperfine structures have been resolved in the rotational spectrum of thionyl aniline, C6H5NSO, using pulsed molecular beam microwave Fourier transform spectroscopy. High precision nuclear quadrupole coupling constants, rotational and quartic centrifugal distortion constants have been determined from the analysis of 12 low-J transitions. Coupling constants are χaa = + 1.5730(14) MHz and (χbb - χcc)= -5.6499(13) MHz. rotational constants are A-4026.72i5(4) MHz, B = 860.64732(8) MHz, and C = 709.52027(7) MHz, and centrifugal distortion constants are ΔJ - 36.6(5) Hz, ΔJK= -107.5(20) Hz, ΔK = 703(68) Hz, δJ = 8.1(5) Hz, and δK=111(19) Hz (representation I' used).


Author(s):  
Daniel Lambrecht ◽  
Eric Berquist

We present a first principles approach for decomposing molecular linear response properties into orthogonal (additive) plus non-orthogonal/cooperative contributions. This approach enables one to 1) identify the contributions of molecular building blocks like functional groups or monomer units to a given response property and 2) quantify cooperativity between these contributions. In analogy to the self consistent field method for molecular interactions, SCF(MI), we term our approach LR(MI). The theory, implementation and pilot data are described in detail in the manuscript and supporting information.


1994 ◽  
Vol 15 (3) ◽  
pp. 269-282 ◽  
Author(s):  
Vincent Théry ◽  
Daniel Rinaldi ◽  
Jean-Louis Rivail ◽  
Bernard Maigret ◽  
György G. Ferenczy

1993 ◽  
Vol 48 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling of thiazole- 33S in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8529.29268 (70) MHz, B = 5427.47098 MHz, and C = 3315.21676 (26) MHz, quartic centrifugal distortion constants and the quadrupole coupling constants of 33S χaa = 7.1708 (61) MHz and χbb= -26.1749 (69) MHz and of 14N χ aa = -2.7411 (61) MHz and χbb = 0.0767 (69) MHz.


1994 ◽  
Vol 72 (11-12) ◽  
pp. 1043-1050 ◽  
Author(s):  
Masaharu Fujitake ◽  
Eizi Hirota

The rotational spectrum of the ClS2 free radical in the gaseous phase has been observed in the millimetre- and submillimetre-wave regions. The ClS2 radical was generated by a dc glow discharge in either S2Cl2 or SCl2. Both a- and b-type R-branch transitions, most of which were split into two fine structure components, were detected for both of the 35Cl and 37Cl isotopic species in the ground vibronic state. As expected from the small hyperfine interaction constants reported by an electron spin resonance (ESR) study, the hyperfine structure was resolved for none of the transitions observed in the present study. Analysis of the observed transition frequencies yielded rotational and centrifugal distortion constants and also spin–rotation interaction constants with their centrifugal corrections. The spin–rotation interaction constants obtained in the present study were consistent with g values of the ESR study. The rotational constants of the two isotopic species led to the structure parameters r(S—S) = 1.906 (7) Å, r(S—Cl) = 2.071 (5) Å, and θ(SSCl) = 110.3 (4)°. A harmonic force field was derived from the observed centrifugal distortion constants and inertial defects combined with the ν1 frequency reported in literature on electronic spectroscopy. This harmonic force field yielded the ν2 and ν3 frequencies (445 (21) and 213.0 (2) cm−1, respectively, for 35ClS2), which differed considerably from the values reported previously.


Sign in / Sign up

Export Citation Format

Share Document