scholarly journals Thymine-Functionalized Gold Nanoparticles (Au NPs) for a Highly Sensitive Fiber-Optic Surface Plasmon Resonance Mercury Ion Nanosensor

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 397
Author(s):  
Huizhen Yuan ◽  
Guangyi Sun ◽  
Wei Peng ◽  
Wei Ji ◽  
Shuwen Chu ◽  
...  

Mercury ion (Hg2+) is considered to be one of the most toxic heavy metal ions. Once the content of Hg2+ exceeds the quality standard in drinking water, the living environment and health of human beings will be threatened and destroyed. Therefore, the establishment of simple and efficient methods for Hg2+ ion detection has important practical significance. In this paper, we present a highly sensitive and selective fiber-optic surface plasmon resonance (SPR) Hg2+ ion chemical nanosensor by designing thymine (T)-modified gold nanoparticles (Au NPs/T) as the signal amplification tags. Thymine-1-acetic acid (T-COOH) was covalently coupled to the surface of 2-aminoethanethiol (AET)-modified Au NPs and Au film by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) activation effect, respectively. In the presence of Hg2+ ions, the immobilized thymine combines specifically with Hg2+ ions, and forms an Au/thymine-Hg2+-thymine/Au (Au/T-Hg2+-T/Au) complex structure, leading to a shift in SPR wavelength due to the strong electromagnetic couple between Au NPs and Au film. Under optimal conditions, the proposed sensor was found to be highly sensitive to Hg2+ in the range of 80 nM–20 µM and the limit of detection (LOD) for Hg2+ was as low as 9.98 nM. This fiber-optic SPR sensor afforded excellent selectivity for Hg2+ ions against other heavy metal ions such as Fe3+, Cu2+, Ni2+, Ba2+, K+, Na+, Pb2+, Co2+, and Zn2+. In addition, the proposed sensor was successfully applied to Hg2+ assay in real environmental samples with excellent recovery. Accordingly, considering its simple advantages, this novel strategy provides a potential platform for on-site determination of Hg2+ ions by SPR sensor.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1516
Author(s):  
Lian Liu ◽  
Shijie Deng ◽  
Jie Zheng ◽  
Libo Yuan ◽  
Hongchang Deng ◽  
...  

An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields.


2021 ◽  
Author(s):  
Weixue Yang ◽  
Fei Li ◽  
Huali Liu ◽  
Zhen Li ◽  
Jiaqi Zhao ◽  
...  

A photo-assisted Li−Oxygen (Li−O2) battery with Au/SnO2 (ASO) hybrid nanotubes as cathode and photocatalyst has been prepared. The localized surface plasmon resonance (LSPR) excitation of gold nanoparticles (Au NPs) can...


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Yuting Zhao ◽  
Shuaiwen Gan ◽  
Leiming Wu ◽  
Jiaqi Zhu ◽  
Yuanjiang Xiang ◽  
...  

AbstractGermanium selenide (GeSe) nanosheets are stable and inexpensive and considered to have a great potential for photovoltaic applications, however we have demonstrated that GeSe nanosheets are also promising for sensing technology, in this paper. By spin-coating the GeSe nanosheets on the surface of noble metal (Au), we have obtained a surface plasmon resonance (SPR) sensor with significantly enhanced sensitivity, and the performance of the sensor is closely related to the thickness of the GeSe film. By detecting different refractive index solutions, we have obtained the optimized sensitivity with 3581.2 nm/RIU (which is nearly 80% improvement compared to traditional SPR sensors) and figure of merit with 14.37 RIU−1. Moreover, the proposed SPR sensor was vastly superior in sensing Pb2+ heavy metal ions after coating it with chitosan and GeSe composite. A maximum sensitivity of 30.38 nm/μg/l has been verified, which is nearly six times better than that of conventional SPR sensor. Our results demonstrated that GeSe nanosheets overlayer with modified SPR sensor has its great potential in heavy metal detection and chemical-specific molecular identification.


Sign in / Sign up

Export Citation Format

Share Document