scholarly journals Fe3O4 Hollow Nanosphere-Coated Spherical-Graphite Composites: A High-Rate Capacity and Ultra-Long Cycle Life Anode Material for Lithium Ion Batteries

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 996 ◽  
Author(s):  
Jiang ◽  
Yan ◽  
Du ◽  
Kang ◽  
Du ◽  
...  

The spherical-graphite/Fe3O4 composite has been successfully fabricated by a simple two-step synthesis strategy. The oxygenous functional groups between spherical-graphite and Fe3O4 benefit the loading of hollow Fe3O4 nanospheres. All of the composites as anodes for half cells show higher lithium storage capacities and better rate performances in comparison with spherical-graphite. The composite containing 39 wt% of hollow Fe3O4 nanospheres exhibits a high reversible capacity of 806 mAh g−1 up to 200 cycles at 0.5 A g−1. When cycled at a higher current density of 2 A g−1, a high charge capacity of 510 mAh g−1 can be sustained, even after 1000 long cycles. Meanwhile, its electrochemical performance for full cells was investigated. When matching with LiCoO2 cathode, its specific capacity can remain at 137 mAh g−1 after 100 cycles. The outstanding lithium storage performance of the spherical-graphite/Fe3O4 composite may depend on the surface modification of high capacity hollow Fe3O4 nanospheres. This work indicates that the spherical-graphite/Fe3O4 composite is one kind of prospective anode material in future energy storage fields.

MRS Advances ◽  
2019 ◽  
Vol 4 (33-34) ◽  
pp. 1861-1868 ◽  
Author(s):  
Hui Wang ◽  
Youning Gong ◽  
Delong Li ◽  
Qiang Fu ◽  
Chunxu Pan

ABSTRACTIn this study, a novel brick-like NiCo2O4 material was synthesized via a facile hydrothermal method. The as-prepared NiCo2O4 material possessed high porosity with the BET specific surface area of 58.33 m2/g, and its pore size distribution was in a range of 5-15 nm with a dominant pore diameter of 10.7 nm. The electrochemical performance of the NiCo2O4 was further investigated as anode material for lithium-ion battery. The NiCo2O4 anode possessed a high lithium storage capacity up to 2353.0 mAh/g at the current density of 100 mA/g. Even at the high rate of 1 A/g, a reversible capacity of ∼600 mAh/g was still retained, and an average discharge capacity of ∼1145 mAh/g could be recovered when the current density was reduced back to 150 mA/g. Due to the simple and cost-effective process, the NiCo2O4 bricks anode material shows great potential for further large-scale applications on the area of lithium-ion battery.


2018 ◽  
Vol 281 ◽  
pp. 801-806 ◽  
Author(s):  
Li Li ◽  
Zhi Hao Wang ◽  
Gao Xue Jiang

Fe3O4@C spheres were synthesized by hydrothermal reaction at 190°C followed by a low temperature heat annealing at 600 °C and applied as an anode material for lithium-ion batteries. The samples were characterized by XRD and SEM. The electrochemical performances of as-synthesized Fe3O4@C were systemically investigated. A reversible capacity of 873 mAh g-1 is obtained in the second cycle at 400 mA g-1. More importantly, the discharge specific capacity can still maintain at about 767 mAh g-1 after 80 cycles. Moreover, Fe3O4@C spheres electrode shows satisfactory rate capability even at a rate up to 2000 mA g-1. Thus, the results demonstrate that Fe3O4@C spheres show encouraging application potential to be an advanced anode material for lithium storage


ChemSusChem ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 299-310 ◽  
Author(s):  
Qiang Guo ◽  
Li Chen ◽  
Zizhao Shan ◽  
Wee Siang Vincent Lee ◽  
Wen Xiao ◽  
...  

2016 ◽  
Vol 4 (24) ◽  
pp. 9593-9599 ◽  
Author(s):  
Gaihua Li ◽  
Hao Yang ◽  
Fengcai Li ◽  
Jia Du ◽  
Wei Shi ◽  
...  

Utilizing the adsorption properties of MOFs, a nanostructured NiP2@C was successfully synthesized, which exhibited enhanced capability for lithium storage in terms of both the reversible specific capacity and high-rate performance.


Nano Energy ◽  
2014 ◽  
Vol 4 ◽  
pp. 23-30 ◽  
Author(s):  
Yinzhu Jiang ◽  
Dan Zhang ◽  
Yong Li ◽  
Tianzhi Yuan ◽  
Naoufal Bahlawane ◽  
...  

2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


2017 ◽  
Vol 8 ◽  
pp. 649-656 ◽  
Author(s):  
Guoliang Gao ◽  
Yan Jin ◽  
Qun Zeng ◽  
Deyu Wang ◽  
Cai Shen

Metall oxides have been proven to be potential candidates for the anode material of lithium-ion batteries (LIBs) because they offer high theoretical capacities, and are environmentally friendly and widely available. However, the low electronic conductivity and severe irreversible lithium storage have hindered a practical application. Herein, we employed ethanolamine as precursor to prepare Fe2O3/COOH-MWCNT composites through a simple hydrothermal synthesis. When these composites were used as electrode material in lithium-ion batteries, a reversible capacity of 711.2 mAh·g−1 at a current density of 500 mA·g−1 after 400 cycles was obtained. The result indicated that Fe2O3/COOH-MWCNT composite is a potential anode material for lithium-ion batteries.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350033 ◽  
Author(s):  
GUIJING LI ◽  
YANYAN SONG ◽  
LINPING ZHANG ◽  
XIN WEI ◽  
XIAOPING SONG ◽  
...  

A novel and simple method has been developed to prepare the Cu-Si composite as anode material for lithium-ion batteries. Nanoporous Cu-Si composite with pore sizes of 1~30 nm was prepared by dealloying the melt-spun Al-Cu-Si-Ce ribbons in a 5 wt.% HCl solution. Electrochemical tests revealed that the nanoporous Cu-Si electrodes exhibited highly reversible capacity of 2317 mAhg-1 and retained a capacity of 1030 mAhg-1 over 20 cycles. The excellent electrochemical performance is attributed to the unique porous structure of the Cu-Si composite. Our results demonstrate that this novel composite is a promising anode candidate for high-capacity rechargeable lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document