scholarly journals Detection of Small Moving Objects in Long Range Infrared Videos from a Change Detection Perspective

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 394
Author(s):  
Chiman Kwan ◽  
Jude Larkin

Detection of small moving objects in long range infrared (IR) videos is challenging due to background clutter, air turbulence, and small target size. In this paper, we present two unsupervised, modular, and flexible frameworks to detect small moving targets. The key idea was inspired by change detection (CD) algorithms where frame differences can help detect motions. Our frameworks consist of change detection, small target detection, and some post-processing algorithms such as image denoising and dilation. Extensive experiments using actual long range mid-wave infrared (MWIR) videos with target distances beyond 3500 m from the camera demonstrated that one approach, using Local Intensity Gradient (LIG) only once in the workflow, performed better than the other, which used LIG in two places, in a 3500 m video, but slightly worse in 4000 m and 5000 m videos. Moreover, we also investigated the use of synthetic bands for target detection and observed promising results for 4000 m and 5000 m videos. Finally, a comparative study with two conventional methods demonstrated that our proposed scheme has comparable performance.

2020 ◽  
Vol 12 (24) ◽  
pp. 4024
Author(s):  
Chiman Kwan ◽  
Bence Budavari

The detection of small moving objects in long-range infrared videos is challenging due to background clutter, air turbulence, and small target size. In this paper, we summarize the investigation of efficient ways to enhance the performance of small target detection in long-range and low-quality infrared videos containing moving objects. In particular, we focus on unsupervised, modular, flexible, and efficient methods for target detection performance enhancement using motion information extracted from optical flow methods. Three well-known optical flow methods were studied. It was found that optical flow methods need to be combined with contrast enhancement, connected component analysis, and target association in order to be effective for target detection. Extensive experiments using long-range mid-wave infrared (MWIR) videos from the Defense Systems Information Analysis Center (DSIAC) dataset clearly demonstrated the efficacy of our proposed approach.


2021 ◽  
Vol 12 (3) ◽  
pp. 01-16
Author(s):  
Chiman Kwan ◽  
David Gribben

It is challenging to detect vehicles in long range and low quality infrared videos using deep learning techniques such as You Only Look Once (YOLO) mainly due to small target size. This is because small targets do not have detailed texture information. This paper focuses on practical approaches for target detection in infrared videos using deep learning techniques. We first investigated a newer version of You Only Look Once (YOLO v4). We then proposed a practical and effective approach by training the YOLO model using videos from longer ranges. Experimental results using real infrared videos ranging from 1000 m to 3500 m demonstrated huge performance improvements. In particular, the average detection percentage over the six ranges of 1000 m to 3500 m improved from 54% when we used the 1500 m videos for training to 95% if we used the 3000 m videos for training.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1431
Author(s):  
Chao Chen ◽  
Kuihua Huang ◽  
Gui Gao

The log-ratio (LR) operator is well suited for change detection in synthetic aperture radar (SAR) amplitude or intensity images. In applying the LR operator to change detection in multi-temporal SAR images, a crucial problem is how to develop precise models for the LR statistics. In this study, we first derive analytically the probability density function (PDF) of the LR operator. Subsequently, the PDF of the LR statistics is parameterized by three parameters, i.e., the number of looks, the coherence magnitude, and the true intensity ratio. Then, the maximum-likelihood (ML) estimates of parameters in the LR PDF are also derived. As an example, the proposed statistical model and corresponding ML estimation are used in an operational application, i.e., determining the constant false alarm rate (CFAR) detection thresholds for small target detection between SAR images. The effectiveness of the proposed model and corresponding ML estimation are verified by applying them to measured multi-temporal SAR images, and comparing the results to the well-known generalized Gaussian (GG) distribution; the usefulness of the proposed LR PDF for small target detection is also shown.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Vincenza Carchiolo ◽  
Marco Grassia ◽  
Alessandro Longheu ◽  
Michele Malgeri ◽  
Giuseppe Mangioni

AbstractMany systems are today modelled as complex networks, since this representation has been proven being an effective approach for understanding and controlling many real-world phenomena. A significant area of interest and research is that of networks robustness, which aims to explore to what extent a network keeps working when failures occur in its structure and how disruptions can be avoided. In this paper, we introduce the idea of exploiting long-range links to improve the robustness of Scale-Free (SF) networks. Several experiments are carried out by attacking the networks before and after the addition of links between the farthest nodes, and the results show that this approach effectively improves the SF network correct functionalities better than other commonly used strategies.


Author(s):  
Mingming Fan ◽  
Shaoqing Tian ◽  
Kai Liu ◽  
Jiaxin Zhao ◽  
Yunsong Li

AbstractInfrared small target detection has been a challenging task due to the weak radiation intensity of targets and the complexity of the background. Traditional methods using hand-designed features are usually effective for specific background and have the problems of low detection rate and high false alarm rate in complex infrared scene. In order to fully exploit the features of infrared image, this paper proposes an infrared small target detection method based on region proposal and convolution neural network. Firstly, the small target intensity is enhanced according to the local intensity characteristics. Then, potential target regions are proposed by corner detection to ensure high detection rate of the method. Finally, the potential target regions are fed into the classifier based on convolutional neural network to eliminate the non-target regions, which can effectively suppress the complex background clutter. Extensive experiments demonstrate that the proposed method can effectively reduce the false alarm rate, and outperform other state-of-the-art methods in terms of subjective visual impression and quantitative evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document