scholarly journals Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 300
Author(s):  
Rajangam Vinodh ◽  
Raji Atchudan ◽  
Hee-Je Kim ◽  
Moonsuk Yi

In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance. Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent years. The present review provides an up-to-date development of PSU based electrolyte membranes and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells (DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key issues associated with enhancing the ionic conductivity and chemical stability have been elucidated as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs.

2004 ◽  
Vol 2 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Michael G. Izenson ◽  
Roger W. Hill

Water management is a critical design issue for polymer electrolyte membrane (PEM) fuel cells, because the PEM must be maintained at the proper water content to remain ionically conducting without flooding the electrodes. Furthermore, portable PEM power systems should operate at water balance to minimize weight. This paper presents the basic design relationships that govern water balance in a PEM fuel cell. Specific calculations are presented based on data from hydrogen/air and direct methanol fuel cells currently under development for portable power systems. We will show how the water balance operating point depends on the cell operating parameters and show the sensitivity to off-design conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 2314-2322 ◽  
Author(s):  
Mochammad Purwanto ◽  
Lukman Atmaja ◽  
Mohamad Azuwa Mohamed ◽  
M. T. Salleh ◽  
Juhana Jaafar ◽  
...  

A composite membrane was fabricated from biopolymer chitosan and montmorillonite (MMT) filler as an alternative membrane electrolyte for direct methanol fuel cell (DMFC) application.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Óscar González-Espasandín ◽  
Teresa J. Leo ◽  
Emilio Navarro-Arévalo

The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.


Sign in / Sign up

Export Citation Format

Share Document