scholarly journals Developing a Mathematical Model for Nucleate Boiling Regime at High Heat Flux

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 726
Author(s):  
Mohd Danish ◽  
Mohammed Al Mesfer

A mathematical model has been developed for heat exchange in nucleate boiling at high flux applying an energy balance on a macrolayer. The wall superheat, macrolayer thickness, and time are the parameters considered for predicting the heat flux. The influence of the wall superheat and macrolayer thickness on average heat flux has been predicted. The outcomes of the current model have been compared with Bhat’s constant macrolayer model, and it was found that these models are in close agreement corresponding to the nucleate pool boiling regime. It was concluded that the wall superheat and macrolayer thickness contributed significantly to conduction heat transfer. The average conduction heat fluxes predicted by the current model and by Bhat’s model are in close agreement for a thinner macrolayer of approximately 50 µm. For higher values of the wall superheat, which corresponds to the nucleate pool boiling condition, the predicted results strongly agree with the results of Bhat’s model. The findings also validate the claim that conduction across the macrolayer accounts for the main heat transfer mode from the heater surface to boiling liquid at high heat flux in nucleate pool boiling.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3893
Author(s):  
Mohd Danish ◽  
Mohammed K. Al Mesfer ◽  
Khursheed B. Ansari ◽  
Mudassir Hasan ◽  
Abdelfattah Amari ◽  
...  

In the current work, the heat flux in nucleate pool boiling has been predicted using the macrolayer and latent heat evaporation model. The wall superheat (ΔT) and macrolayer thickness (δ) are the parameters considered for predicting the heat flux. The influence of operating parameters on instantaneous conduction heat flux and average heat flux across the macrolayer are investigated. A comparison of the findings of current model with Bhat’s decreasing macrolayer model revealed a close agreement under the nucleate pool boiling condition at high heat flux. It is suggested that conduction heat transfer strongly rely on macrolayer thickness and wall superheat. The wall superheat and macrolayer thickness is found to significantly contribute to conduction heat transfer. The predicted results closely agree with the findings of Bhat’s decreasing macrolayer model for higher values of wall superheat signifying the nucleate boiling. The predicted results of the proposed model and Bhat’s existing model are validated by the experimental data. The findings also endorse the claim that predominant mode of heat transfer from heater surface to boiling liquid is the conduction across the macrolayer at the significantly high heat flux region of nucleate boiling.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. Jung ◽  
S. J. Kim ◽  
J. Kim

Experimental work was undertaken to investigate the process by which pool-boiling critical heat flux (CHF) occurs using an IR camera to measure the local temperature and heat transfer coefficients on a heated silicon surface. The wetted area fraction (WF), the contact line length density (CLD), the frequency between dryout events, the lifetime of the dry patches, the speed of the advancing and receding contact lines, the dry patch size distribution on the surface, and the heat transfer from the liquid-covered areas were measured throughout the boiling curve. Quantitative analysis of this data at high heat flux and transition through CHF revealed that the boiling curve can simply be obtained by weighting the heat flux from the liquid-covered areas by WF. CHF mechanisms proposed in the literature were evaluated against the observations.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Nihal E. Joshua ◽  
Denesh K. Ajakumar ◽  
Huseyin Bostanci

This study experimentally investigated the effect of hydrophobic patterned surfaces in nucleate boiling heat transfer. A dielectric liquid, HFE-7100, was used as the working fluid in the saturated boiling tests. Dielectric liquids are known to have highly-wetting characteristics. They tend to fill surface cavities that would normally trap vapor/gas, and serve as active nucleation sites during boiling. With the lack of these vapor filled cavities, boiling of a dielectric liquid leads to high incipience superheats and accompanying temperature overshoots. Heater samples in this study were prepared by applying a thin Teflon (AF400, Dupont) coating on 1-cm2 smooth copper surfaces following common photolithography techniques. Matching size thick film resistors, attached onto the copper samples, generated heat and simulated high heat flux electronic devices. Tests investigated the heater samples featuring circular pattern sizes between 40–100 μm, and corresponding pitch sizes between 80–200 μm. Additionally, a plain, smooth copper surface was tested to obtain reference data. Based on data, hydrophobic patterned surfaces effectively eliminated the temperature overshoot at boiling incipience, and considerably improved nucleate boiling performance in terms of heat transfer coefficient and critical heat flux over the reference surface. Hydrophobic patterned surfaces therefore demonstrated a practical surface modification method for heat transfer enhancement in immersion cooling applications.


2016 ◽  
Vol 61 ◽  
pp. 127-139 ◽  
Author(s):  
Jure Petkovsek ◽  
Yi Heng ◽  
Matevz Zupancic ◽  
Henrik Gjerkes ◽  
Franc Cimerman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document