scholarly journals Study of Azimuthal Anisotropy of High-pT Charged Particles in Au Au Collisions at √sNN = 200 GeV with RHIC-PHENIX

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Risa Nishitani

We study the path length dependence of energy-loss in the Quark Gluon Plasma (QGP) by measuring the azimuthal anisotropy coefficient and transverse momentum ( p T ) spectra for charged hadrons in Au + Au at s N N = 200 GeV at the RHIC-PHENIX experiment. To estimate the strength of the energy-loss as a function of p T , we use the Δ p T which is the difference of p T which provide the same yields at in-plane and out-of-plane directions. The results indicate that there are different structures between low- p T and high- p T regions. At high- p T , the size of Δ p T increases as the centrality goes up. We also calculate the difference of the path length of in-plane and out-of-plane directions for each centrality. The difference of the path length increases along with the centrality and the tendency is the same with the Δ p T results.

2000 ◽  
Vol 50 (1) ◽  
pp. 37-69 ◽  
Author(s):  
R. Baier ◽  
D. Schiff ◽  
B. G. Zakharov

▪ Abstract  We review the propagation of energetic partons in hot or cold QCD matter, as known from recent work. We summarize advances in the understanding of both collisional and radiative energy loss. Our emphasis is on radiative energy loss, which has very interesting properties that may help to detect the quark-gluon plasma produced in heavy-ion collisions. We describe two different theoretical approaches, which lead to the same radiated gluon energy spectrum. The case of a longitudinally expanding QCD plasma is investigated. The energy lost by a jet with given opening angle is calculated with the aim of making predictions for the suppression (quenching) of hard jet production. Phenomenological implications for the difference between hot and cold matter are discussed. Numerical estimates of the loss suggest that it may be significantly greater in hot matter than in cold. This makes the magnitude of the radiative energy loss a remarkable signal for quark-gluon plasma formation.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
B. Blok

Abstract We study the energy loss of a heavy quark propagating in the quark-gluon plasma (QGP) in the framework of the Moller theory, including possible large Coulomb logarithms as a perturbation to BDMPSZ bremsstrahlung, described in the harmonic oscillator (HO) approximation. We derive the analytical expression that describes the energy loss in the entire emitted gluon frequency region. In the small frequencies region, for angles larger than the dead cone angle, the energy loss is controlled by the BDMPSZ mechanism, while for larger frequencies it is described by N = 1 term in the GLV opacity expansion. We estimate corresponding quenching rates for different values of the heavy quark path length and different m/E ratios.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Subhash Singha ◽  
Prashanth Shanmuganathan ◽  
Declan Keane

We review topics related to the first moment of azimuthal anisotropy (v1), commonly known as directed flow, focusing on both charged particles and identified particles from heavy-ion collisions. Beam energies from the highest available, at the CERN LHC, down to projectile kinetic energies per nucleon of a few GeV per nucleon, as studied in experiments at the Brookhaven AGS, fall within our scope. We focus on experimental measurements and on theoretical work where direct comparisons with experiment have been emphasized. The physics addressed or potentially addressed by this review topic includes the study of Quark Gluon Plasma and, more generally, investigation of the Quantum Chromodynamics phase diagram and the equation of state describing the accessible phases.


Sign in / Sign up

Export Citation Format

Share Document