scholarly journals Mapping Fragmented Impervious Surface Areas Overlooked by Global Land-Cover Products in the Liping County, Guizhou Province, China

2020 ◽  
Vol 12 (9) ◽  
pp. 1527
Author(s):  
Jing Zhao ◽  
Narumasa Tsutsumida

Imperviousness is an important indicator for monitoring urbanization and environmental changes, and is evaluated widely in urban areas, but not in rural areas. An accurate impervious surface area (ISA) map in rural areas is essential to achieve environmental conservation and sustainable rural development. Global land-cover products such as MODIS MCD12Q1, ESA CCI-LC, and Global Urban Land are common resources for environmental practitioners to collect land-cover information including ISAs. However, global products tend to focus on large ISA agglomerations and may not identify fragmented ISA extents in less populated regions. Land-use planners and practitioners have to map ISAs if it is difficult to obtain such spatially explicit information from local governments. A common and consistent approach for rural ISA mapping is yet to be established. A case study of the Liping County, a typical rural region in southwest China, was undertaken with the objectives of assessing the global land-cover products in the context of rural ISA mapping and proposing a simple and feasible approach for the mapping. This approach was developed using Landsat 8 imagery and by applying a random forests classifier. An appropriate number of training samples were distributed to towns or villages across all townships in the study area for classification. The results demonstrate that the global land-cover products identified major ISA agglomerations, specifically at the county seat; however, other fragmented ISAs over the study area were overlooked. In contrast, the map created using the developed approach inferred ISAs across all townships with an overall accuracy of 91%. A large amount of training samples together with geographic information of towns or villages is the key suggestion to identify and map ISAs in rural areas.

2017 ◽  
Vol 62 (7) ◽  
pp. 508-515 ◽  
Author(s):  
Congcong Li ◽  
Peng Gong ◽  
Jie Wang ◽  
Zhiliang Zhu ◽  
Gregory S. Biging ◽  
...  

2020 ◽  
Vol 161 ◽  
pp. 27-36 ◽  
Author(s):  
Huabing Huang ◽  
Jie Wang ◽  
Caixia Liu ◽  
Lu Liang ◽  
Congcong Li ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-38
Author(s):  
Liangyun Liu ◽  
Xiao Zhang ◽  
Yuan Gao ◽  
Xidong Chen ◽  
Xie Shuai ◽  
...  

Land-cover mapping is one of the foundations of Earth science. As a result of the combined efforts of many scientists, numerous global land-cover (GLC) products with a resolution of 30 m have so far been generated. However, the increasing number of fine-resolution GLC datasets is imposing additional workloads as it is necessary to confirm the quality of these datasets and check their suitability for user applications. To provide guidelines for users, in this study, the recent developments in currently available 30 m GLC products (including three GLC products and thematic products for four different land-cover types, i.e., impervious surface, forest, cropland, and inland water) were first reviewed. Despite the great efforts toward improving mapping accuracy that there have been in recent decades, the current 30 m GLC products still suffer from having relatively low accuracies of between 46.0% and 88.9% for GlobeLand30-2010, 57.71% and 80.36% for FROM_GLC-2015, and 65.59% and 84.33% for GLC_FCS30-2015. The reported accuracies for the global 30 m thematic maps vary from 67.86% to 95.1% for the eight impervious surface products that were reviewed, 56.72% to 97.36% for the seven forest products, 32.73% to 98.3% for the six cropland products, and 15.67% to 99.7% for the six inland water products. The consistency between the current GLC products was then examined. The GLC maps showed a good overall agreement in terms of spatial patterns but a limited agreement for some vegetation classes (such as shrub, tree, and grassland) in specific areas such as transition zones. Finally, the prospects for fine-resolution GLC mapping were also considered. With the rapid development of cloud computing platforms and big data, the Google Earth Engine (GEE) greatly facilitates the production of global fine-resolution land-cover maps by integrating multisource remote sensing datasets with advanced image processing and classification algorithms and powerful computing capability. The synergy between the spectral, spatial, and temporal features derived from multisource satellite datasets and stored in cloud computing platforms will definitely improve the classification accuracy and spatiotemporal resolution of fine-resolution GLC products. In general, up to now, most land-cover maps have not been able to achieve the maximum (per class or overall) error of 5%–15% required by many applications. Therefore, more efforts are needed toward improving the accuracy of these GLC products, especially for classes for which the accuracy has so far been low (such as shrub, wetland, tundra, and grassland) and in terms of the overall quality of the maps.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 236
Author(s):  
Ling Zhu ◽  
Guangshuai Jin ◽  
Dejun Gao

Freely available satellite imagery improves the research and production of land-cover products at the global scale or over large areas. The integration of land-cover products is a process of combining the advantages or characteristics of several products to generate new products and meet the demand for special needs. This study presents an ontology-based semantic mapping approach for integration land-cover products using hybrid ontology with EAGLE (EIONET Action Group on Land monitoring in Europe) matrix elements as the shared vocabulary, linking and comparing concepts from multiple local ontologies. Ontology mapping based on term, attribute and instance is combined to obtain the semantic similarity between heterogeneous land-cover products and realise the integration on a schema level. Moreover, through the collection and interpretation of ground verification points, the local accuracy of the source product is evaluated using the index Kriging method. Two integration models are developed that combine semantic similarity and local accuracy. Taking NLCD (National Land Cover Database) and FROM-GLC-Seg (Finer Resolution Observation and Monitoring-Global Land Cover-Segmentation) as source products and the second-level class refinement of GlobeLand30 land-cover product as an example, the forest class is subdivided into broad-leaf, coniferous and mixed forest. Results show that the highest accuracies of the second class are 82.6%, 72.0% and 60.0%, respectively, for broad-leaf, coniferous and mixed forest.


2021 ◽  
Vol 258 ◽  
pp. 112364
Author(s):  
Han Liu ◽  
Peng Gong ◽  
Jie Wang ◽  
Xi Wang ◽  
Grant Ning ◽  
...  

1995 ◽  
Vol 51 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Steven W. Running ◽  
Thomas R. Loveland ◽  
Lars L. Pierce ◽  
R.R. Nemani ◽  
E.R. Hunt

Sign in / Sign up

Export Citation Format

Share Document