Journal of Remote Sensing
Latest Publications


TOTAL DOCUMENTS

23
(FIVE YEARS 23)

H-INDEX

0
(FIVE YEARS 0)

Published By American Association For The Advancement Of Science (AAAS)

2694-1589

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Hengmao Wang ◽  
Fei Jiang ◽  
Yi Liu ◽  
Dongxu Yang ◽  
Mousong Wu ◽  
...  

TanSat is China’s first greenhouse gases observing satellite. In recent years, substantial progresses have been achieved on retrieving column-averaged CO2 dry air mole fraction (XCO2). However, relatively few attempts have been made to estimate terrestrial net ecosystem exchange (NEE) using TanSat XCO2 retrievals. In this study, based on the GEOS-Chem 4D-Var data assimilation system, we infer the global NEE from April 2017 to March 2018 using TanSat XCO2. The inversion estimates global NEE at −3.46 PgC yr-1, evidently higher than prior estimate and giving rise to an improved estimate of global atmospheric CO2 growth rate. Regionally, our inversion greatly increases the carbon uptakes in northern mid-to-high latitudes and significantly enhances the carbon releases in tropical and southern lands, especially in Africa and India peninsula. The increase of posterior sinks in northern lands is mainly attributed to the decreased carbon release during the nongrowing season, and the decrease of carbon uptakes in tropical and southern lands basically occurs throughout the year. Evaluations against independent CO2 observations and comparison with previous estimates indicate that although the land sinks in the northern middle latitudes and southern temperate regions are improved to a certain extent, they are obviously overestimated in northern high latitudes and underestimated in tropical lands (mainly northern Africa), respectively. These results suggest that TanSat XCO2 retrievals may have systematic negative biases in northern high latitudes and large positive biases over northern Africa, and further efforts are required to remove bias in these regions for better estimates of global and regional NEE.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Tianyu Yu ◽  
Wenjian Ni ◽  
Zhiyu Zhang ◽  
Qinhuo Liu ◽  
Guoqing Sun

Canopy cover is an important parameter affecting forest succession, carbon fluxes, and wildlife habitats. Several global maps with different spatial resolutions have been produced based on satellite images, but facing the deficiency of reliable references for accuracy assessments. The rapid development of unmanned aerial vehicle (UAV) equipped with consumer-grade camera enables the acquisition of high-resolution images at low cost, which provides the research community a promising tool to collect reference data. However, it is still a challenge to distinguish tree crowns and understory green vegetation based on the UAV-based true color images (RGB) due to the limited spectral information. In addition, the canopy height model (CHM) derived from photogrammetric point clouds has also been used to identify tree crowns but limited by the unavailability of understory terrain elevations. This study proposed a simple method to distinguish tree crowns and understories based on UAV visible images, which was referred to as BAMOS for convenience. The central idea of the BAMOS was the synergy of spectral information from digital orthophoto map (DOM) and structural information from digital surface model (DSM). Samples of canopy covers were produced by applying the BAMOS method on the UAV images collected at 77 sites with a size of about 1.0 km2 across Daxing’anling forested area in northeast of China. Results showed that canopy cover extracted by the BAMOS method was highly correlated to visually interpreted ones with correlation coefficient (r) of 0.96 and root mean square error (RMSE) of 5.7%. Then, the UAV-based canopy covers served as references for assessment of satellite-based maps, including MOD44B Version 6 Vegetation Continuous Fields (MODIS VCF), maps developed by the Global Land Cover Facility (GLCF) and by the Global Land Analysis and Discovery laboratory (GLAD). Results showed that both GLAD and GLCF canopy covers could capture the dominant spatial patterns, but GLAD canopy cover tended to miss scattered trees in highly heterogeneous areas, and GLCF failed to capture non-tree areas. Most important of all, obvious underestimations with RMSE about 20% were easily observed in all satellite-based maps, although the temporal inconsistency with references might have some contributions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaodong Zhang ◽  
Lianbo Hu

Light scattering by pure water and seawater is a fundamental optical property that plays a critical role in ocean optics and ocean color studies. We briefly review the theory of molecular scattering in liquid and electrolyte solutions and focus on the recent developments in modeling the effect of pressure, extending to extreme environments, and evaluating the effect of salinity on the depolarization ratio. We demonstrate how the modeling of seawater scattering can be applied to better understand spectral absorption and attenuation of pure water and seawater. We recommend future efforts should be directed at measuring the polarized components of scattering by pure water over a greater range of wavelengths, temperature, salinity, and pressure to constrain and validate the model and to improve our knowledge of the water’s depolarization ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hongliang Fang ◽  
Yao Wang ◽  
Yinghui Zhang ◽  
Sijia Li

Leaf area index (LAI) is an essential climate variable that is crucial to understand the global vegetation change. Long-term satellite LAI products have been applied in many global vegetation change studies. However, these LAI products contain various uncertainties that are not been fully considered in current studies. The objective of this study is to explore the uncertainties in the global LAI products and the uncertainty variations. Two global LAI datasets—the European Geoland2 Version 2 (GEOV2) and Moderate Resolution Imaging Spectroradiometer (MODIS) (2003-2019)—were investigated. The qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) embedded in the product quality layers were analyzed to identify the temporal anomalies in the quality profile. The results show that the global GEOV2 (0.042/10a) and MODIS (0.034/10a) LAI values have steadly increased from 2003 to 2019. The global LAI uncertainty (0.016/10a) and relative uncertainty (0.3%/10a) from GEOV2 have also increased gradually, especially during the growing season from April to October. The uncertainty increase is larger for woody biomes than for herbaceous types. Contrastingly, the MODIS LAI product uncertainty remained stable over the study period. The uncertainty increase indicated by GEOV2 is partly attributed to the sensor shift in the product series. Further algorithm enhancement is necessary to improve the cross-sensor performance. This study highlights the importance of studying the LAI uncertainty and the uncertainty variation. Temporal variations in the LAI products and the product quality revealed herein have significant implications on global vegetation change studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Ruiliang Pu

Timely and accurate information on tree species (TS) is crucial for developing strategies for sustainable management and conservation of artificial and natural forests. Over the last four decades, advances in remote sensing technologies have made TS classification possible. Since many studies on the topic have been conducted and their comprehensive results and novel findings have been published in the literature, it is necessary to conduct an updated review on the status, trends, potentials, and challenges and to recommend future directions. The review will provide an overview on various optical and light detection and ranging (LiDAR) sensors; present and assess current various techniques/methods for, and a general trend of method development in, TS classification; and identify limitations and recommend future directions. In this review, several concluding remarks were made. They include the following: (1) A large group of studies on the topic were using high-resolution satellite, airborne multi-/hyperspectral imagery, and airborne LiDAR data. (2) A trend of “multiple” method development for the topic was observed. (3) Machine learning methods including deep learning models were demonstrated to be significant in improving TS classification accuracy. (4) Recently, unmanned aerial vehicle- (UAV-) based sensors have caught the interest of researchers and practitioners for the topic-related research and applications. In addition, three future directions were recommended, including refining the three categories of “multiple” methods, developing novel data fusion algorithms or processing chains, and exploring new spectral unmixing algorithms to automatically extract and map TS spectral information from satellite hyperspectral data.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shawn D. Taylor ◽  
Dawn M. Browning ◽  
Ruben A. Baca ◽  
Feng Gao

Land surface phenology (LSP) enables global-scale tracking of ecosystem processes, but its utility is limited in drylands due to low vegetation cover and resulting low annual amplitudes of vegetation indices (VIs). Due to the importance of drylands for biodiversity, food security, and the carbon cycle, it is necessary to understand the limitations in measuring dryland dynamics. Here, using simulated data and multitemporal unmanned aerial vehicle (UAV) imagery of a desert shrubland, we explore the feasibility of detecting LSP with respect to fractional vegetation cover, plant functional types, VI uncertainty, and two different detection algorithms. Using simulated data, we found that plants with distinct VI signals, such as deciduous shrubs, can require up to 60% fractional cover to consistently detect LSP. Evergreen plants, with lower seasonal VI amplitude, require considerably higher cover and can have undetectable phenology even with 100% vegetation cover. Our evaluation of two algorithms showed that neither performed the best in all cases. Even with adequate cover, biases in phenological metrics can still exceed 20 days and can never be 100% accurate due to VI uncertainty from shadows, sensor view angle, and atmospheric interference. We showed how high-resolution UAV imagery enables LSP studies in drylands and highlighted important scale effects driven by within-canopy VI variation. With high-resolution imagery, the open canopies of drylands are beneficial as they allow for straightforward identification of individual plants, enabling the tracking of phenology at the individual level. Drylands thus have the potential to become an exemplary environment for future LSP research.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiao Zhang ◽  
Liangyun Liu ◽  
Xidong Chen ◽  
Yuan Gao ◽  
Mihang Jiang

Accurately monitoring the spatiotemporal dynamics of impervious surfaces is very important for understanding the process of urbanization. However, the complicated makeup and spectral heterogeneity of impervious surfaces create difficulties for impervious surface monitoring. In this study, we propose an automatic method to capture the spatiotemporal expansion of impervious surfaces using spectral generalization and time series Landsat imagery. First, the multitemporal compositing and relative radiometric normalization methods were used to extract phenological information and ensure spectral consistency between reference imagery and monitored imagery. Second, we automatically derived training samples from the prior MSMT_IS30-2020 impervious surface products and migrated the surface reflectance of impervious surfaces in the reference period of 2020 to other periods (1985–2015). Third, the random forest classification method, trained using the migrated surface reflectance of impervious surfaces and pervious surface training samples at each period, was employed to extract temporally independent impervious surfaces. Further, a temporal consistency check method was applied to ensure the consistency and reliability of the monitoring results. According to qualitative and quantitative validation results, the method achieved an overall accuracy of 90.9% and kappa coefficient of 0.859 in identifying the spatiotemporal expansion of impervious surfaces and performed better in capturing the impervious surface dynamics when compared with other impervious surface datasets. Lastly, our results indicate that a rapid increase of impervious surfaces was observed in the Yangtze River Delta, and the area of impervious surfaces in 2000 and 2020 was 1.86 times and 4.76 times that of 1985, respectively. Therefore, it could be concluded that the proposed method offered a novel perspective for providing timely and accurate impervious surface dynamics.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhaoying Zhang ◽  
Yongguang Zhang ◽  
Jing M. Chen ◽  
Weimin Ju ◽  
Mirco Migliavacca ◽  
...  

Remote sensing of solar-induced chlorophyll fluorescence (SIF) provides new possibilities to estimate terrestrial gross primary production (GPP). To mitigate the angular and canopy structural effects on original SIF observed by sensors (SIFobs), it is recommended to derive total canopy SIF emission (SIFtotal) of leaves within a canopy using canopy interception (i0) and reflectance of vegetation (RV). However, the effects of the uncertainties in i0 and RV on the estimation of SIFtotal have not been well understood. Here, we evaluated such effects on the estimation of GPP using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model. The SCOPE simulations showed that the R2 between GPP and SIFtotal was clearly higher than that between GPP and SIFobs and the differences in R2 (ΔR2) tend to decrease with the increasing levels of uncertainties in i0 and RV. The resultant ΔR2 decreased to zero when the uncertainty level in i0 and RV was ~30% for red band SIF (RSIF, 683 nm) and ~20% for far-red band SIF (FRSIF, 740 nm). In addition, as compared to the TROPOspheric Monitoring Instrument (TROPOMI) SIFobs at both red and far-red bands, SIFtotal derived using any combination of i0 (from MCD15, VNP15, and CGLS LAI products) and RV (from MCD34, MCD19, and VNP43 BRDF products) showed comparable improvements in estimating GPP. With this study, we suggest a way to advance our understanding in the estimation of a more physiological relevant SIF datasets (SIFtotal) using current satellite products.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Junwei Wang ◽  
Kun Gao ◽  
Zhenzhou Zhang ◽  
Chong Ni ◽  
Zibo Hu ◽  
...  

Despite the promising performance on benchmark datasets that deep convolutional neural networks have exhibited in single image super-resolution (SISR), there are two underlying limitations to existing methods. First, current supervised learning-based SISR methods for remote sensing satellite imagery do not use paired real sensor data, instead operating on simulated high-resolution (HR) and low-resolution (LR) image-pairs (typically HR images with their bicubic-degraded LR counterparts), which often yield poor performance on real-world LR images. Second, SISR is an ill-posed problem, and the super-resolved image from discriminatively trained networks with lp norm loss is an average of the infinite possible HR images, thus, always has low perceptual quality. Though this issue can be mitigated by generative adversarial network (GAN), it is still hard to search in the whole solution-space and find the best solution. In this paper, we focus on real-world application and introduce a new multisensor dataset for real-world remote sensing satellite imagery super-resolution. In addition, we propose a novel conditional GAN scheme for SISR task which can further reduce the solution-space. Therefore, the super-resolved images have not only high fidelity, but high perceptual quality as well. Extensive experiments demonstrate that networks trained on the introduced dataset can obtain better performances than those trained on simulated data. Additionally, the proposed conditional GAN scheme can achieve better perceptual quality while obtaining comparable fidelity over the state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenjian Ni ◽  
Zhiyu Zhang ◽  
Guoqing Sun

Waveform broadening effects of large-footprint lidar caused by terrain slopes are still a great challenge limiting the estimation accuracy of forest aboveground biomass (AGB) over mountainous areas. Slope-adaptive metrics of waveforms were proposed in our previous studies. However, its validation was limited by the unavailability of enough reference data. This study made full validation of slope-adaptive metrics using data acquired by the Global Ecosystem Dynamics Investigation (GEDI) mission, meanwhile exploring GEDI waveforms on estimations of forest AGB. Three types of waveform metrics were employed, including slope-adaptive metrics (RHT), typical height metrics relative to ground peaks (RH), and waveform parameters (WP). In addition to terrain slopes, two other factors were also explored including the geolocation issue and signal start and ending points of waveforms. Results showed that footprint geolocations in the first version GEDI data products were shifted to the left forward of nominal geolocations with a distance of about 24 m~30 m and were substantially corrected in the second version; the fourth and fifth groups of signal start and ending points of waveforms had worse performance than the rest of the four groups because they used the maximum and minimum signal thresholds, respectively. Taking airborne laser scanner (ALS) data as reference, the root mean square error (RMSE) of terrain slopes extracted from the digital elevation model of the shuttle radar topography mission (SRTM DEM) was about 3°. The coefficients of determination (R2) of estimation models of forest AGB based on RH metrics were improved from 0.48 to 0.68 with RMSE decreased from 19.7 Mg/ha to 15.4 Mg/ha by the second version geolocations. The RHT and WP metrics gave the best and the worst estimation accuracy, respectively. RHT further improved R2 to 0.77 and decreased RMSE to 13.0 Mg/ha using terrain slopes extracted from SRTM DEM with a resolution of 1 arc second. R2 of estimation models based on RHT was finally improved to 0.8 with RMSE decreased to 11.7 Mg/ha using exact terrain slopes from ALS data. This study demonstrated the great potential of slope-adaptive metrics of GEDI waveforms on estimations of forest aboveground biomass over mountainous areas.


Sign in / Sign up

Export Citation Format

Share Document