scholarly journals Land Cover Changes after the Massive Rohingya Refugee Influx in Bangladesh: Neo-Classic Unsupervised Approach

2021 ◽  
Vol 13 (24) ◽  
pp. 5056
Author(s):  
Maiko Sakamoto ◽  
S. M. Asik Ullah ◽  
Masakazu Tani

The Rohingya refugee influx to Bangladesh in 2017 was a historical incident; the number of refugees was so massive that significant impacts to local communities was inevitable. The Bangladesh government provided land in a preserved area for constructing makeshift camps for the refugees. Previous studies have revealed the land cover changes and impacts of the refugee influx around campsites, especially with regard to local forest resources. Our aim is to establish a convenient approach of providing up-to-date information to monitor holistic local situations. We employed a classic unsupervised technique—a combination of k-means clustering and maximum likelihood estimation—with the latest rich time-series satellite images of Sentinal-1 and Sentinal-2. A combination of VV and normalized difference water index (NDWI) images was successful in identifying built-up/disturbed areas, and a combination of VH and NDWI images was successful in differentiating wetland/saltpan, agriculture /open field, degraded forest/bush, and forest areas. By doing this, we provided annual land cover classification maps for the entire Teknaf peninsula for the pre- and post-influx periods with both fair quality and without prior training data. Our analyses revealed that on-going impacts were still observed by May 2021. As a simple estimation of the intervention consequence, the built-up/disturbed areas increased 6,825 ha (compared with the 2015–17 period). However, while the impacts on the original forest were not found to be significant, the degraded forest/bush areas were largely degraded by 4,606 ha. These cultivated lands would be used for agricultural activities. This is in line with the reported farmers’ increased income, despite local people with other occupations that are all equally facing the decreases in income. The convenience of our unsupervised classification approach would help keep accumulating a time-series land cover classification, which is important in monitoring impacts on local communities.

2020 ◽  
Vol 12 (18) ◽  
pp. 3091
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Jiangning Yang

Percentile features derived from Landsat time-series data are widely adopted in land-cover classification. However, the temporal distribution of Landsat valid observations is highly uneven across different pixels due to the gaps resulting from clouds, cloud shadows, snow, and the scan line corrector (SLC)-off problem. In addition, when applying percentile features, land-cover change in time-series data is usually not considered. In this paper, an improved percentile called the time-series model (TSM)-adjusted percentile is proposed for land-cover classification based on Landsat data. The Landsat data were first modeled using three different time-series models, and the land-cover changes were continuously monitored using the continuous change detection (CCD) algorithm. The TSM-adjusted percentiles for stable pixels were then derived from the synthetic time-series data without gaps. Finally, the TSM-adjusted percentiles were used for generating supervised random forest classifications. The proposed methods were implemented on Landsat time-series data of three study areas. The classification results were compared with those obtained using the original percentiles derived from the original time-series data with gaps. The results show that the land-cover classifications obtained using the proposed TSM-adjusted percentiles have significantly higher overall accuracies than those obtained using the original percentiles. The proposed method was more effective for forest types with obvious phenological characteristics and with fewer valid observations. In addition, it was also robust to the training data sampling strategy. Overall, the methods proposed in this work can provide accurate characterization of land cover and improve the overall classification accuracy based on such metrics. The findings are promising for percentile-based land cover classification using Landsat time series data, especially in the areas with frequent cloud coverage.


Author(s):  
H. Courteille ◽  
A. Benoit ◽  
N. Meger ◽  
A. Atto ◽  
D. Ienco

2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


2020 ◽  
Vol 12 (22) ◽  
pp. 3798
Author(s):  
Lei Ma ◽  
Michael Schmitt ◽  
Xiaoxiang Zhu

Recently, time-series from optical satellite data have been frequently used in object-based land-cover classification. This poses a significant challenge to object-based image analysis (OBIA) owing to the presence of complex spatio-temporal information in the time-series data. This study evaluates object-based land-cover classification in the northern suburbs of Munich using time-series from optical Sentinel data. Using a random forest classifier as the backbone, experiments were designed to analyze the impact of the segmentation scale, features (including spectral and temporal features), categories, frequency, and acquisition timing of optical satellite images. Based on our analyses, the following findings are reported: (1) Optical Sentinel images acquired over four seasons can make a significant contribution to the classification of agricultural areas, even though this contribution varies between spectral bands for the same period. (2) The use of time-series data alleviates the issue of identifying the “optimal” segmentation scale. The finding of this study can provide a more comprehensive understanding of the effects of classification uncertainty on object-based dense multi-temporal image classification.


Sign in / Sign up

Export Citation Format

Share Document