scholarly journals An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 414 ◽  
Author(s):  
Luyang Jing ◽  
Taiyong Wang ◽  
Ming Zhao ◽  
Peng Wang
2012 ◽  
Vol 466-467 ◽  
pp. 1222-1226
Author(s):  
Bin Ma ◽  
Lin Chong Hao ◽  
Wan Jiang Zhang ◽  
Jing Dai ◽  
Zhong Hua Han

In this paper, we presented an equipment fault diagnosis method based on multi-sensor data fusion, in order to solve the problems such as uncertainty, imprecision and low reliability caused by using a single sensor to diagnose the equipment faults. We used a variety of sensors to collect the data for diagnosed objects and fused the data by using D-S evidence theory, according to the change of confidence and uncertainty, diagnosed whether the faults happened. Experimental results show that, the D-S evidence theory algorithm can reduce the uncertainty of the results of fault diagnosis, improved diagnostic accuracy and reliability, and compared with the fault diagnosis using a single sensor, this method has a better effect.


Author(s):  
Jun He ◽  
Shixi Yang ◽  
Evangelos Papatheou ◽  
Xin Xiong ◽  
Haibo Wan ◽  
...  

Gearbox is the key functional unit in a mechanical transmission system. As its operating condition being complex and the interference transmitting from diverse paths, the vibration signals collected from an individual sensor may not provide a fully accurate description on the health condition of a gearbox. For this reason, a new method for fault diagnosis of gearboxes based on multi-sensor data fusion is presented in this paper. There are three main steps in this method. First, prior to feature extraction, two signal processing methods, i.e. the energy operator and time synchronous averaging, are applied to multi-sensor vibration signals to remove interference and highlight fault characteristic information, then the statistical features are extracted from both the raw and preprocessed signals to form an original feature set. Second, a coupled feature selection scheme combining the distance evaluation technique and max-relevance and min-redundancy is carried out to obtain an optimal feature set. Finally, the deep belief network, a novel intelligent diagnosis method with a deep architecture, is applied to identify different gearbox health conditions. As the multi-sensor data fusion technique is utilized to provide sufficient and complementary information for fault diagnosis, this method holds the potential to overcome the shortcomings from an individual sensor that may not accurately describe the health conditions of gearboxes. Ten different gearbox health conditions are simulated to validate the performance of the proposed method. The results confirm the superiority of the proposed method in gearbox fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document