scholarly journals Towards a Meaningful 3D Map Using a 3D Lidar and a Camera

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2571 ◽  
Author(s):  
Jongmin Jeong ◽  
Tae Yoon ◽  
Jin Park

Semantic 3D maps are required for various applications including robot navigation and surveying, and their importance has significantly increased. Generally, existing studies on semantic mapping were camera-based approaches that could not be operated in large-scale environments owing to their computational burden. Recently, a method of combining a 3D Lidar with a camera was introduced to address this problem, and a 3D Lidar and a camera were also utilized for semantic 3D mapping. In this study, our algorithm consists of semantic mapping and map refinement. In the semantic mapping, a GPS and an IMU are integrated to estimate the odometry of the system, and subsequently, the point clouds measured from a 3D Lidar are registered by using this information. Furthermore, we use the latest CNN-based semantic segmentation to obtain semantic information on the surrounding environment. To integrate the point cloud with semantic information, we developed incremental semantic labeling including coordinate alignment, error minimization, and semantic information fusion. Additionally, to improve the quality of the generated semantic map, the map refinement is processed in a batch. It enhances the spatial distribution of labels and removes traces produced by moving vehicles effectively. We conduct experiments on challenging sequences to demonstrate that our algorithm outperforms state-of-the-art methods in terms of accuracy and intersection over union.

2021 ◽  
Vol 13 (16) ◽  
pp. 3121
Author(s):  
Beanbonyka Rim ◽  
Ahyoung Lee ◽  
Min Hong

Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a challenge for a deep learning approach, due to their unstructured, unorder, irregular, and large-scale characteristics. Therefore, this paper presents an encoder–decoder shared multi-layer perceptron (MLP) with multiple losses, to address an issue of this semantic segmentation. The challenge rises a trade-off between efficiency and effectiveness in performance. To balance this trade-off, we proposed common mechanisms, which is simple and yet effective, by defining a random point sampling layer, an attention-based pooling layer, and a summation of multiple losses integrated with the encoder–decoder shared MLPs method for the large-scale outdoor point clouds semantic segmentation. We conducted our experiments on the following two large-scale benchmark datasets: Toronto-3D and DALES dataset. Our experimental results achieved an overall accuracy (OA) and a mean intersection over union (mIoU) of both the Toronto-3D dataset, with 83.60% and 71.03%, and the DALES dataset, with 76.43% and 59.52%, respectively. Additionally, our proposed method performed a few numbers of parameters of the model, and faster than PointNet++ by about three times during inferencing.


Author(s):  
Jian Wu ◽  
Qingxiong Yang

In this paper, we study the semantic segmentation of 3D LiDAR point cloud data in urban environments for autonomous driving, and a method utilizing the surface information of the ground plane was proposed. In practice, the resolution of a LiDAR sensor installed in a self-driving vehicle is relatively low and thus the acquired point cloud is indeed quite sparse. While recent work on dense point cloud segmentation has achieved promising results, the performance is relatively low when directly applied to sparse point clouds. This paper is focusing on semantic segmentation of the sparse point clouds obtained from 32-channel LiDAR sensor with deep neural networks. The main contribution is the integration of the ground information which is used to group ground points far away from each other. Qualitative and quantitative experiments on two large-scale point cloud datasets show that the proposed method outperforms the current state-of-the-art.


Author(s):  
S. Schmohl ◽  
U. Sörgel

<p><strong>Abstract.</strong> Semantic segmentation of point clouds is one of the main steps in automated processing of data from Airborne Laser Scanning (ALS). Established methods usually require expensive calculation of handcrafted, point-wise features. In contrast, Convolutional Neural Networks (CNNs) have been established as powerful classifiers, which at the same time also learn a set of features by themselves. However, their application to ALS data is not trivial. Pure 3D CNNs require a lot of memory and computing time, therefore most related approaches project ALS point clouds into two-dimensional images. Sparse Submanifold Convolutional Networks (SSCNs) address this issue by exploiting the sparsity often inherent in 3D data. In this work, we propose the application of SSCNs for efficient semantic segmentation of voxelized ALS point clouds in an end-to-end encoder-decoder architecture. We evaluate this method on the ISPRS Vaihingen 3D Semantic Labeling benchmark and achieve state-of-the-art 85.0% overall accuracy. Furthermore, we demonstrate its capabilities regarding large-scale ALS data by classifying a 2.5&amp;thinsp;km<sup>2</sup> subset containing 41&amp;thinsp;M points from the Actueel Hoogtebestand Nederland (AHN3) with 95% overall accuracy in just 48&amp;thinsp;s inference time or with 96% in 108&amp;thinsp;s.</p>


Author(s):  
Lei Wang ◽  
Jiaji Wu ◽  
Xunyu Liu ◽  
Xiaoliang Ma ◽  
Jun Cheng

AbstractThree-dimensional (3D) semantic segmentation of point clouds is important in many scenarios, such as automatic driving, robotic navigation, while edge computing is indispensable in the devices. Deep learning methods based on point sampling prove to be computation and memory efficient to tackle large-scale point clouds (e.g. millions of points). However, some local features may be abandoned while sampling. In this paper, We present one end-to-end 3D semantic segmentation framework based on dilated nearest neighbor encoding. Instead of down-sampling point cloud directly, we propose a dilated nearest neighbor encoding module to broaden the network’s receptive field to learn more 3D geometric information. Without increase of network parameters, our method is computation and memory efficient for large-scale point clouds. We have evaluated the dilated nearest neighbor encoding in two different networks. The first is the random sampling with local feature aggregation. The second is the Point Transformer. We have evaluated the quality of the semantic segmentation on the benchmark 3D dataset S3DIS, and demonstrate that the proposed dilated nearest neighbor encoding exhibited stable advantages over baseline and competing methods.


2022 ◽  
Vol 193 ◽  
pp. 106653
Author(s):  
Hejun Wei ◽  
Enyong Xu ◽  
Jinlai Zhang ◽  
Yanmei Meng ◽  
Jin Wei ◽  
...  

Author(s):  
M. Kölle ◽  
V. Walter ◽  
S. Schmohl ◽  
U. Soergel

Abstract. Automated semantic interpretation of 3D point clouds is crucial for many tasks in the domain of geospatial data analysis. For this purpose, labeled training data is required, which has often to be provided manually by experts. One approach to minimize effort in terms of costs of human interaction is Active Learning (AL). The aim is to process only the subset of an unlabeled dataset that is particularly helpful with respect to class separation. Here a machine identifies informative instances which are then labeled by humans, thereby increasing the performance of the machine. In order to completely avoid involvement of an expert, this time-consuming annotation can be resolved via crowdsourcing. Therefore, we propose an approach combining AL with paid crowdsourcing. Although incorporating human interaction, our method can run fully automatically, so that only an unlabeled dataset and a fixed financial budget for the payment of the crowdworkers need to be provided. We conduct multiple iteration steps of the AL process on the ISPRS Vaihingen 3D Semantic Labeling benchmark dataset (V3D) and especially evaluate the performance of the crowd when labeling 3D points. We prove our concept by using labels derived from our crowd-based AL method for classifying the test dataset. The analysis outlines that by labeling only 0:4% of the training dataset by the crowd and spending less than 145 $, both our trained Random Forest and sparse 3D CNN classifier differ in Overall Accuracy by less than 3 percentage points compared to the same classifiers trained on the complete V3D training set.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2161 ◽  
Author(s):  
Arnadi Murtiyoso ◽  
Pierre Grussenmeyer

3D heritage documentation has seen a surge in the past decade due to developments in reality-based 3D recording techniques. Several methods such as photogrammetry and laser scanning are becoming ubiquitous amongst architects, archaeologists, surveyors, and conservators. The main result of these methods is a 3D representation of the object in the form of point clouds. However, a solely geometric point cloud is often insufficient for further analysis, monitoring, and model predicting of the heritage object. The semantic annotation of point clouds remains an interesting research topic since traditionally it requires manual labeling and therefore a lot of time and resources. This paper proposes an automated pipeline to segment and classify multi-scalar point clouds in the case of heritage object. This is done in order to perform multi-level segmentation from the scale of a historical neighborhood up until that of architectural elements, specifically pillars and beams. The proposed workflow involves an algorithmic approach in the form of a toolbox which includes various functions covering the semantic segmentation of large point clouds into smaller, more manageable and semantically labeled clusters. The first part of the workflow will explain the segmentation and semantic labeling of heritage complexes into individual buildings, while a second part will discuss the use of the same toolbox to segment the resulting buildings further into architectural elements. The toolbox was tested on several historical buildings and showed promising results. The ultimate intention of the project is to help the manual point cloud labeling, especially when confronted with the large training data requirements of machine learning-based algorithms.


2020 ◽  
Vol 12 (11) ◽  
pp. 1875 ◽  
Author(s):  
Jingwei Zhu ◽  
Joachim Gehrung ◽  
Rong Huang ◽  
Björn Borgmann ◽  
Zhenghao Sun ◽  
...  

In the past decade, a vast amount of strategies, methods, and algorithms have been developed to explore the semantic interpretation of 3D point clouds for extracting desirable information. To assess the performance of the developed algorithms or methods, public standard benchmark datasets should invariably be introduced and used, which serve as an indicator and ruler in the evaluation and comparison. In this work, we introduce and present large-scale Mobile LiDAR point clouds acquired at the city campus of the Technical University of Munich, which have been manually annotated and can be used for the evaluation of related algorithms and methods for semantic point cloud interpretation. We created three datasets from a measurement campaign conducted in April 2016, including a benchmark dataset for semantic labeling, test data for instance segmentation, and test data for annotated single 360 ° laser scans. These datasets cover an urban area of approximately 1 km long roadways and include more than 40 million annotated points with eight classes of objects labeled. Moreover, experiments were carried out with results from several baseline methods compared and analyzed, revealing the quality of this dataset and its effectiveness when using it for performance evaluation.


Sign in / Sign up

Export Citation Format

Share Document