airborne laser
Recently Published Documents


TOTAL DOCUMENTS

1651
(FIVE YEARS 286)

H-INDEX

80
(FIVE YEARS 8)

2022 ◽  
Vol 43 (1) ◽  
pp. 299-329
Author(s):  
Johan Holmgren ◽  
Eva Lindberg ◽  
Kenneth Olofsson ◽  
Henrik J. Persson

Silva Fennica ◽  
2022 ◽  
Vol 56 (1) ◽  
Author(s):  
Lennart Noordermeer ◽  
Erik Næsset ◽  
Terje Gobakken

Newly developed positioning systems in cut-to-length harvesters enable georeferencing of individual trees with submeter accuracy. Together with detailed tree measurements recorded during processing of the tree, georeferenced harvester data are emerging as a valuable tool for forest inventory. Previous studies have shown that harvester data can be linked to airborne laser scanner (ALS) data to estimate a range of forest attributes. However, there is little empirical evidence of the benefits of improved positioning accuracy of harvester data. The two objectives of this study were to (1) assess the accuracy of timber volume estimation using harvester data and ALS data acquired with different scanners over multiple years and (2) assess how harvester positioning errors affect merchantable timber volume predicted and estimated from ALS data. We used harvester data from 33 commercial logging operations, comprising 93 731 harvested stems georeferenced with sub-meter accuracy, as plot-level training data in an enhanced area-based inventory approach. By randomly altering the tree positions in Monte Carlo simulations, we assessed how prediction and estimation errors were influenced by different combinations of simulated positioning errors and grid cell sizes. We simulated positioning errors of 1, 2, …, 15 m and used grid cells of 100, 200, 300 and 400 m. Values of root mean square errors obtained for cell-level predictions of timber volume differed significantly for the different grid cell sizes. The use of larger grid cells resulted in a greater accuracy of timber volume predictions, which were also less affected by positioning errors. Accuracies of timber volume estimates at logging operation level decreased significantly with increasing levels of positioning error. The results highlight the benefit of accurate positioning of harvester data in forest inventory applications. Further, the results indicate that when estimating timber volume from ALS data and inaccurately positioned harvester data, larger grid cells are beneficial.2


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 35
Author(s):  
Jean-François Prieur ◽  
Benoît St-Onge ◽  
Richard A. Fournier ◽  
Murray E. Woods ◽  
Parvez Rana ◽  
...  

Species identification is a critical factor for obtaining accurate forest inventories. This paper compares the same method of tree species identification (at the individual crown level) across three different types of airborne laser scanning systems (ALS): two linear lidar systems (monospectral and multispectral) and one single-photon lidar (SPL) system to ascertain whether current individual tree crown (ITC) species classification methods are applicable across all sensors. SPL is a new type of sensor that promises comparable point densities from higher flight altitudes, thereby increasing lidar coverage. Initial results indicate that the methods are indeed applicable across all of the three sensor types with broadly similar overall accuracies (Hardwood/Softwood, 83–90%; 12 species, 46–54%; 4 species, 68–79%), with SPL being slightly lower in all cases. The additional intensity features that are provided by multispectral ALS appear to be more beneficial to overall accuracy than the higher point density of SPL. We also demonstrate the potential contribution of lidar time-series data in improving classification accuracy (Hardwood/Softwood, 91%; 12 species, 58%; 4 species, 84%). Possible causes for lower SPL accuracy are (a) differences in the nature of the intensity features and (b) differences in first and second return distributions between the two linear systems and SPL. We also show that segmentation (and field-identified training crowns deriving from segmentation) that is performed on an initial dataset can be used on subsequent datasets with similar overall accuracy. To our knowledge, this is the first study to compare these three types of ALS systems for species identification at the individual tree level.


2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Wioleta Błaszczak-Bąk ◽  
Joanna Janicka ◽  
Tomasz Kozakiewicz ◽  
Krystian Chudzikiewicz ◽  
Grzegorz Bąk

Airborne Laser Scanning (ALS) is a technology often used to study forest areas. The main area of application of ALS in forests is collecting data to determine the height of individual trees and entire stands, tree density and stand biomass. The content of the ALS data is also classified, i.e., registered objects are identified, including the species affiliation of individual trees. Important information for forest districts includes other parameters related to the structure and share of stands and the number of trees in the forest district. The main goal of this study was to propose the new ALS data processing methodology for detecting single trees in the Samławki Forest District. The idea of the proposed methodology is to indicate a free and accessible solution for any user (at least in Poland). This new ALS data processing methodology contributes to research on the use of ALS data in forest districts to maintain up-to-date and accurate stand statistics. This methodology was based on free data from the geoportal.gov.pl portal and free software, which allowed to minimize the costs of preparing data for the needs of forestry activities. In cooperation with the Samławki Forest District, the proposed methodology was used to detect the number and heights of trees for two forest addresses 13b and 30a, and then to calculate the volume of stands. As a result, the volume of the analyzed stands was calculated, obtaining values differing from the nominal ones included in the FMP (Forest Management Plan) by about 25% and 5%, respectively, for larch and oak.


Author(s):  
Kasper Kansanen ◽  
Petteri Packalen ◽  
Timo Lähivaara ◽  
Aku Seppänen ◽  
Jari Vauhkonen ◽  
...  

Horvitz--Thompson-like stand density estimation is a method for estimating the stand density from tree crown objects extracted from airborne laser scanning data through individual tree detection. The estimator is based on stochastic geometry and mathematical morphology of the (planar) set formed by the detected tree crowns. This set is used to approximate the detection probabilities of trees. These probabilities are then used to calculate the estimate. The method includes a tuning parameter, which needs to be known to apply the method. We present a refinement of the method to allow more general detection conditions than the previous papers and present and discuss the methods for estimating the tuning parameter of the estimator using a functional $k$-nearest neighbors method. We test the model fitting and prediction in two spatially separate data sets and examine the plot-level accuracy of estimation. The estimator produced a $13$\% lower RMSE than the benchmark method in an external validation data set. We also analyze the effects of similarity and dissimilarity of training and validation data to the results.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1724
Author(s):  
Cristiano Rodrigues Reis ◽  
Eric Bastos Gorgens ◽  
Danilo Roberti Alves de Almeida ◽  
Carlos Henrique Souza Celes ◽  
Jacqueline Rosette ◽  
...  

(1) Background: Forests throughout the world are managed to fulfil a range of commercial and ecosystem services. The same applies to managed areas of the Amazon forest. We explore a method of sustainable forest management (SFM) which anticipates the result of processes of natural mortality of large, mature trees that could fall and damage their neighbors. Collecting all the information required for planning logging in the Brazilian Amazon is, currently, a hard, time-consuming and expensive task. (2) Methods: This information can be obtained more quickly, accurately and objectively by including airborne laser scanning (ALS) products in the operational plan. We used ALS point clouds to isolate emergent crowns from the canopy height model. Then, we performed field work to validate the existence of these trees, and to understand how many commercial trees (tree diameter ≥ 50 cm) we identified by orienting the trees search through the emergent canopy model. (3) Results: We were able to detect 184 (54.4%) trees from 338 field-recorded individuals in 20 plots (totaling 8 ha). Of the detected trees, 66 individuals were classified as having potential for commerce. Furthermore, 58 individuals presented the best stem quality for logging, which represents more than seven high quality commercial trees per hectare. The logistic regression showed that the effects that positively influence the emergent crown formation are strongly presented in the commercial species. (4) Conclusions: Using airborne laser scanning can improve the SFM planning in a structurally complex, dense and mixed composition tropical forest by reducing field work in the initial stages of management. Therefore, we propose that ALS operational planning can be used to more efficiently direct field surveys without the need for a full census.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1713
Author(s):  
Linghan Gao ◽  
Xiaoli Zhang

Accurate forest above-ground biomass (AGB) estimation is important for dynamic monitoring of forest resources and evaluation of forest carbon sequestration capacity. However, it is difficult to depict the forest’s vertical structure and its heterogeneity using optical remote sensing when estimating forest AGB, for the reason that electromagnetic waves cannot penetrate the canopy’s surface to obtain low vegetation information, especially in subtropical and tropical forests with complex layer structure and tree species composition. As an active remote sensing technology, an airborne laser scanner (ALS) can penetrate the canopy surface to obtain three-dimensional structure information related to AGB. This paper takes the Jiepai sub-forest farm and the Gaofeng state-owned forest farm in southern China as the experimental area and explores the optimal features from the ALS point cloud data and AGB inversion model in the subtropical forest with complex tree species composition and structure. Firstly, considering tree canopy structure, terrain features, point cloud structure and density features, 63 point cloud features were extracted. In view of the biomass distribution differences of different tree species, the random forest (RF) method was used to select the optimal features of each tree species. Secondly, four modeling methods were used to establish the AGB estimation models of each tree species and verify their accuracy. The results showed that the features related to tree height had a great impact on forest AGB. The top features of Cunninghamia Lanceolata (Chinese fir) and Eucalyptus are all related to height, Pinus (pine tree) is also related to terrain features and other broadleaved trees are also related to point cloud density features. The accuracy of the stepwise regression model is best with the AGB estimation accuracy of 0.19, 0.76, 0.71 and 0.40, respectively, for the Chinese fir, pine tree, eucalyptus and other broadleaved trees. In conclusion, the proposed linear regression AGB estimation model of each tree species combining different features derived from ALS point cloud data has high applicability, which can provide effective support for more accurate forest AGB and carbon stock inventory and monitoring.


2021 ◽  
Vol 15 (12) ◽  
pp. 5345-5369
Author(s):  
Fabian Fleischer ◽  
Florian Haas ◽  
Livia Piermattei ◽  
Madlene Pfeiffer ◽  
Tobias Heckmann ◽  
...  

Abstract. Permafrost is being degraded worldwide due to the change in external forcing caused by climate change. This has also been shown to affect the morphodynamics of active rock glaciers. We studied these changes, depending on the analysis, on nine or eight active rock glaciers, respectively, with different characteristics in multiple epochs between 1953 and 2017 in Kaunertal, Austria. A combination of historical aerial photographs and airborne laser scanning data and their derivatives were used to analyse surface movement and surface elevation change. In general, the studied landforms showed a significant acceleration of varying magnitude in the epoch 1997–2006 and a volume loss to variable degrees throughout the investigation period. Rock glaciers related to glacier forefields showed significantly higher rates of subsidence than talus-connected ones. Besides, we detected two rock glaciers with deviating behaviour and one that showed an inactivation of its terminal part. By analysing meteorological data (temperature, precipitation and snow cover onset and duration), we were able to identify possible links to these external forcing parameters. The catchment-wide survey further revealed that, despite the general trend, timing, magnitude and temporal peaks of morphodynamic changes indicate a slightly different sensitivity, response or response time of individual rock glaciers to fluctuations and changes in external forcing parameters.


Sign in / Sign up

Export Citation Format

Share Document