scholarly journals A Novel Methodology for Series Arc Fault Detection by Temporal Domain Visualization and Convolutional Neural Network

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 162 ◽  
Author(s):  
Kai Yang ◽  
Ruobo Chu ◽  
Rencheng Zhang ◽  
Jinchao Xiao ◽  
Ran Tu

AC arc faults are one of the most important causes of residential electrical wiring fires, which may produce extremely high temperatures and easily ignite surrounding combustible materials. The global interest in machine learning-based methods for arc fault diagnosis applications is increasing due to continuous challenges in efficiency and accuracy. In this paper, a temporal domain visualization convolutional neural network (TDV-CNN) methodology is proposed. The current transformer and high-speed data acquisition system are used to collect the current of a series of arc faults, then the signal is filtered by a digital filter and converted into a gray image in time sequence before being fed into TDV-CNN. Five different electric loads were selected for experimental validation with various signal characteristics, including vacuum cleaner, fluorescent lamp, dimmer, heater, and desktop computer. The experimental results confirm that the classification accuracy of the five loads’ work states in the ten categories could reach 98.7% or even higher by adjusting parameters perfectly. The methodology is believed to be reliable for series arc detection with relatively high accuracy and also has important potential applications in other fault diagnosis fields.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4930 ◽  
Author(s):  
Honglin Luo ◽  
Lin Bo ◽  
Chang Peng ◽  
Dongming Hou

Axle-box bearings are one of the most critical mechanical components of the high-speed train. Vibration signals collected from axle-box bearings are usually nonlinear and nonstationary, caused by the complicated operating conditions. Due to the high reliability and real-time requirement of axle-box bearing fault diagnosis for high-speed trains, the accuracy and efficiency of the bearing fault diagnosis method based on deep learning needs to be enhanced. To identify the axle-box bearing fault accurately and quickly, a novel approach is proposed in this paper using a simplified shallow information fusion-convolutional neural network (SSIF-CNN). Firstly, the time domain and frequency domain features were extracted from the training samples and testing samples before been inputted into the SSIF-CNN model. Secondly, the feature maps obtained from each hidden layer were transformed into a corresponding feature sequence by the global convolution operation. Finally, those feature sequences obtained from different layers were concatenated into one-dimensional as the fully connected layer to achieve the fault identification task. The experimental results showed that the SSIF-CNN effectively compressed the training time and improved the fault diagnosis accuracy compared with a general CNN.


Author(s):  
Yao Wang ◽  
Linming Hou ◽  
Kamal Chandra Paul ◽  
Yunsheng Ban ◽  
Chen Chen ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 23717-23725
Author(s):  
Jiaxing Wang ◽  
Dazhi Wang ◽  
Sihan Wang ◽  
Wenhui Li ◽  
Keling Song

Sign in / Sign up

Export Citation Format

Share Document