A novel one‐dimensional convolutional neural network architecture for chemical process fault diagnosis

Author(s):  
Xin Niu ◽  
Xia Yang
2021 ◽  
Author(s):  
George Seif

This thesis presents a novel convolutional neural network architecture for high-scale image super-resolution. In particular, we introduce two separate modifications that can be made to the convolutional layers in the network: one-dimensional kernels and dilated kernels. We show how both of these methods can be used to expand the receptive field and performance of super-resolution networks, without increasing the number of trainable parameters or network depth. We show that these modifications can easily be integrated into any convolutional neural network to improve performance. Our methods are especially effective for the challenging high scale super-resolution due to the expanded network receptive field. We conduct extensive empirical evaluations to demonstrate the effectiveness of our methods, showing strong improvements over the state-of-the-art.


2021 ◽  
Author(s):  
George Seif

This thesis presents a novel convolutional neural network architecture for high-scale image super-resolution. In particular, we introduce two separate modifications that can be made to the convolutional layers in the network: one-dimensional kernels and dilated kernels. We show how both of these methods can be used to expand the receptive field and performance of super-resolution networks, without increasing the number of trainable parameters or network depth. We show that these modifications can easily be integrated into any convolutional neural network to improve performance. Our methods are especially effective for the challenging high scale super-resolution due to the expanded network receptive field. We conduct extensive empirical evaluations to demonstrate the effectiveness of our methods, showing strong improvements over the state-of-the-art.


2021 ◽  
Vol 11 (15) ◽  
pp. 6845
Author(s):  
Abu Sayeed ◽  
Jungpil Shin ◽  
Md. Al Mehedi Hasan ◽  
Azmain Yakin Srizon ◽  
Md. Mehedi Hasan

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular languages i.e., English, Chinese, Hindi, Spanish, etc. have received many contributions in the area of handwritten character recognition, Bengali has not received many noteworthy contributions in this domain because of the complex curvatures and similar writing fashions of Bengali characters. Previously, studies were conducted by using different approaches based on traditional learning, and deep learning. In this research, we proposed a low-cost novel convolutional neural network architecture for the recognition of Bengali characters with only 2.24 to 2.43 million parameters based on the number of output classes. We considered 8 different formations of CMATERdb datasets based on previous studies for the training phase. With experimental analysis, we showed that our proposed system outperformed previous works by a noteworthy margin for all 8 datasets. Moreover, we tested our trained models on other available Bengali characters datasets such as Ekush, BanglaLekha, and NumtaDB datasets. Our proposed architecture achieved 96–99% overall accuracies for these datasets as well. We believe our contributions will be beneficial for developing an automated high-performance recognition tool for Bengali handwritten characters.


Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


Sign in / Sign up

Export Citation Format

Share Document