process fault diagnosis
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 40)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Haonan Wang ◽  
Yijia Chen

Chemical processes are usually toxic, corrosive, flammable and explosive. If the process fails, the danger is extremely high. Traditional model-based fault diagnosis methods need to establish an accurate mathematical model of the system, while modern engineering processes are usually large in scale and complex, and it is difficult to establish an accurate mathematical model. Artificial neural network has been widely used in chemical process because of its advantages of parallel processing, self-adaptation, robustness, learnability and fault tolerance. Artificial neural networks based on "deep learning" have been successfully applied to fault diagnosis in various chemical processes. This article summarizes the principle and development process of artificial neural networks, and analyzes the research progress and application status of deep neural networks in chemical process fault diagnosis based on cases. Finally, it is pointed out that deep neural network in the field of chemical process fault diagnosis is of great significance in solving the impact of less fault data and system state changes on the fault detection rate, and promoting the industrial application of fault diagnosis models.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1659
Author(s):  
Shengkai Wang ◽  
Jie Zhang

This paper proposes a neural network-based process fault diagnosis system with Andrews plot for information pre-processing to enhance the performance of online process fault diagnosis. By using features extracted from Andrews plot as the inputs to a neural network, as a classifier, the diagnosis speed and reliability are improved. A method for determining the important features in the Andrews function is proposed. The proposed fault diagnosis system is applied to a simulated continuous stirred tank reactor process and is compared with two conventional neural network-based fault diagnosis systems: scheme B where the monitored measurements are directly fed to a neural network after scaling and scheme C where the monitored measurements are converted to qualitative trend data before feeding to a neural network. Of all the considered faults, the proposed fault diagnosis system diagnosed the abrupt faults on average 5.45 s and 2.66 s earlier than schemes B and C, respectively and diagnosed the incipient faults on average 13.82 s and 5.09 s earlier than schemes B and C, respectively. The results reveal that Andrews plot method utilized in online process monitoring has a great potential in industrial process monitoring.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1266
Author(s):  
Yuman Yao ◽  
Jiaxin Zhang ◽  
Wenjia Luo ◽  
Yiyang Dai

Process fault is one of the main reasons that a system may appear unreliable, and it affects the safety of a system. The existence of different degrees of noise in the industry also makes it difficult to extract the effective features of the data for the fault diagnosis method based on deep learning. In order to solve the above problems, this paper improves the deep belief network (DBN) and iterates the optimal penalty term by introducing a penalty factor, avoiding the local optimal situation of a DBN and improving the accuracy of fault diagnosis in order to minimize the impact of noise while improving fault diagnosis and process safety. Using the adaptive noise reduction capability of an adaptive lifting wavelet (ALW), a practical chemical process fault diagnosis model (ALW-DBN) is finally proposed. Then, according to the Tennessee–Eastman (TE) benchmark test process, the ALW-DBN model is compared with other methods, showing that the fault diagnosis performance of the enhanced DBN combined with adaptive wavelet denoising has been significantly improved. In addition, the ALW-DBN shows better performance under the influence of different noise levels in the acid gas absorption process, which proves its high adaptability to different noise levels.


2021 ◽  
Vol 145 ◽  
pp. 107197
Author(s):  
Rajeevan Arunthavanathan ◽  
Faisal Khan ◽  
Salim Ahmed ◽  
Syed Imtiaz

Sign in / Sign up

Export Citation Format

Share Document