scholarly journals Suppressing the Spikes in Electroencephalogram via an Iterative Joint Singular Spectrum Analysis and Low-Rank Decomposition Approach

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 341 ◽  
Author(s):  
Zikang Tian ◽  
Bingo Wing-Kuen Ling ◽  
Xueling Zhou ◽  
Ringo Wai-Kit Lam ◽  
Kok-Lay Teo

The novelty and the contribution of this paper consists of applying an iterative joint singular spectrum analysis and low-rank decomposition approach for suppressing the spikes in an electroencephalogram. First, an electroencephalogram is filtered by an ideal lowpass filter via removing its discrete Fourier transform coefficients outside the δ wave band, the θ wave band, the α wave band, the β wave band and the γ wave band. Second, the singular spectrum analysis is performed on the filtered electroencephalogram to obtain the singular spectrum analysis components. The singular spectrum analysis components are sorted according to the magnitudes of their corresponding eigenvalues. The singular spectrum analysis components are sequentially added together starting from the last singular spectrum analysis component. If the variance of the summed singular spectrum analysis component under the unit energy normalization is larger than a threshold value, then the summation is terminated. The summed singular spectrum analysis component forms the first scale of the electroencephalogram. The rest singular spectrum analysis components are also summed up together separately to form the residue of the electroencephalogram. Next, the low-rank decomposition is performed on the residue of the electroencephalogram to obtain both the low-rank component and the sparse component. The low-rank component is added to the previous scale of the electroencephalogram to obtain the next scale of the electroencephalogram. Finally, the above procedures are repeated on the sparse component until the variance of the current scale of the electroencephalogram under the unit energy normalization is larger than another threshold value. The computer numerical simulation results show that the spike suppression performance based on our proposed method outperforms that based on the state-of-the-art methods.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Simon Arridge ◽  
Pascal Fernsel ◽  
Andreas Hauptmann

<p style='text-indent:20px;'>A primary interest in dynamic inverse problems is to identify the underlying temporal behaviour of the system from outside measurements. In this work, we consider the case, where the target can be represented by a decomposition of spatial and temporal basis functions and hence can be efficiently represented by a low-rank decomposition. We then propose a joint reconstruction and low-rank decomposition method based on the Nonnegative Matrix Factorisation to obtain the unknown from highly undersampled dynamic measurement data. The proposed framework allows for flexible incorporation of separate regularisers for spatial and temporal features. For the special case of a stationary operator, we can effectively use the decomposition to reduce the computational complexity and obtain a substantial speed-up. The proposed methods are evaluated for three simulated phantoms and we compare the obtained results to a separate low-rank reconstruction and subsequent decomposition approach based on the widely used principal component analysis.</p>


2021 ◽  
Vol 7 (12) ◽  
pp. 279
Author(s):  
Jobin Francis ◽  
Baburaj Madathil ◽  
Sudhish N. George ◽  
Sony George

The massive generation of data, which includes images and videos, has made data management, analysis, information extraction difficult in recent years. To gather relevant information, this large amount of data needs to be grouped. Real-life data may be noise corrupted during data collection or transmission, and the majority of them are unlabeled, allowing for the use of robust unsupervised clustering techniques. Traditional clustering techniques, which vectorize the images, are unable to keep the geometrical structure of the images. Hence, a robust tensor-based submodule clustering method based on l12 regularization with improved clustering capability is formulated. The l12 induced tensor nuclear norm (TNN), integrated into the proposed method, offers better low rankness while retaining the self-expressiveness property of submodules. Unlike existing methods, the proposed method employs a simultaneous noise removal technique by twisting the lateral image slices of the input data tensor into frontal slices and eliminates the noise content in each image, using the principles of the sparse and low rank decomposition technique. Experiments are carried out over three datasets with varying amounts of sparse, Gaussian and salt and pepper noise. The experimental results demonstrate the superior performance of the proposed method over the existing state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1403
Author(s):  
Xin Jin ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yi Shen

Geocenter is the center of the mass of the Earth system including the solid Earth, ocean, and atmosphere. The time-varying characteristics of geocenter motion (GCM) reflect the redistribution of the Earth’s mass and the interaction between solid Earth and mass loading. Multi-channel singular spectrum analysis (MSSA) was introduced to analyze the GCM products determined from satellite laser ranging data released by the Center for Space Research through January 1993 to February 2017 for extracting the periods and the long-term trend of GCM. The results show that the GCM has obvious seasonal characteristics of the annual, semiannual, quasi-0.6-year, and quasi-1.5-year in the X, Y, and Z directions, the annual characteristics make great domination, and its amplitudes are 1.7, 2.8, and 4.4 mm, respectively. It also shows long-period terms of 6.09 years as well as the non-linear trends of 0.05, 0.04, and –0.10 mm/yr in the three directions, respectively. To obtain real-time GCM parameters, the MSSA method combining a linear model (LM) and autoregressive moving average model (ARMA) was applied to predict GCM for 2 years into the future. The precision of predictions made using the proposed model was evaluated by the root mean squared error (RMSE). The results show that the proposed method can effectively predict GCM parameters, and the prediction precision in the three directions is 1.53, 1.08, and 3.46 mm, respectively.


2020 ◽  
Vol 14 (3) ◽  
pp. 295-302
Author(s):  
Chuandong Zhu ◽  
Wei Zhan ◽  
Jinzhao Liu ◽  
Ming Chen

AbstractThe mixture effect of the long-term variations is a main challenge in single channel singular spectrum analysis (SSA) for the reconstruction of the annual signal from GRACE data. In this paper, a nonlinear long-term variations deduction method is used to improve the accuracy of annual signal reconstructed from GRACE data using SSA. Our method can identify and eliminate the nonlinear long-term variations of the equivalent water height time series recovered from GRACE. Therefore the mixture effect of the long-term variations can be avoided in the annual modes of SSA. For the global terrestrial water recovered from GRACE, the peak to peak value of the annual signal is between 1.4 cm and 126.9 cm, with an average of 11.7 cm. After the long-term and the annual term have been deducted, the standard deviation of residual time series is between 0.9 cm and 9.9 cm, with an average of 2.1 cm. Compared with the traditional least squares fitting method, our method can reflect the dynamic change of the annual signal in global terrestrial water, more accurately with an uncertainty of between 0.3 cm and 2.9 cm.


Sign in / Sign up

Export Citation Format

Share Document