scholarly journals WSN-SLAP: Secure and Lightweight Mutual Authentication Protocol for Wireless Sensor Networks

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 936
Author(s):  
Deok Kyu Kwon ◽  
Sung Jin Yu ◽  
Joon Young Lee ◽  
Seung Hwan Son ◽  
Young Ho Park

Wireless sensor networks (WSN) are widely used to provide users with convenient services such as health-care, and smart home. To provide convenient services, sensor nodes in WSN environments collect and send the sensing data to the gateway. However, it can suffer from serious security issues because susceptible messages are exchanged through an insecure channel. Therefore, secure authentication protocols are necessary to prevent security flaws in WSN. In 2020, Moghadam et al. suggested an efficient authentication and key agreement scheme in WSN. Unfortunately, we discover that Moghadam et al.’s scheme cannot prevent insider and session-specific random number leakage attacks. We also prove that Moghadam et al.’s scheme does not ensure perfect forward secrecy. To prevent security vulnerabilities of Moghadam et al.’s scheme, we propose a secure and lightweight mutual authentication protocol for WSNs (WSN-SLAP). WSN-SLAP has the resistance from various security drawbacks, and provides perfect forward secrecy and mutual authentication. We prove the security of WSN-SLAP by using Burrows-Abadi-Needham (BAN) logic, Real-or-Random (ROR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. In addition, we evaluate the performance of WSN-SLAP compared with existing related protocols. We demonstrate that WSN-SLAP is more secure and suitable than previous protocols for WSN environments.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4143 ◽  
Author(s):  
SungJin Yu ◽  
YoungHo Park

Wireless sensor networks (WSN) are composed of multiple sensor nodes with limited storage, computation, power, and communication capabilities and are widely used in various fields such as banks, hospitals, institutes to national defense, research, and so on. However, useful services are susceptible to security threats because sensitive data in various fields are exchanged via a public channel. Thus, secure authentication protocols are indispensable to provide various services in WSN. In 2019, Mo and Chen presented a lightweight secure user authentication scheme in WSN. We discover that Mo and Chen’s scheme suffers from various security flaws, such as session key exposure and masquerade attacks, and does not provide anonymity, untraceability, and mutual authentication. To resolve the security weaknesses of Mo and Chen’s scheme, we propose a secure and lightweight three-factor-based user authentication protocol for WSN, called SLUA-WSN. The proposed SLUA-WSN can prevent security threats and ensure anonymity, untraceability, and mutual authentication. We analyze the security of SLUA-WSN through the informal and formal analysis, including Burrows–Abadi–Needham (BAN) logic, Real-or-Random (ROR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. Moreover, we compare the performance of SLUA-WSN with some existing schemes. The proposed SLUA-WSN better ensures the security and efficiency than previous proposed scheme and is suitable for practical WSN applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuailiang Zhang ◽  
Xiujuan Du ◽  
Xin Liu

As the most popular way of communication technology at the moment, wireless sensor networks have been widely concerned by academia and industry and plays an important role in military, agriculture, medicine, and other fields. Identity authentication offers the first line of defence to ensure the security communication of wireless sensor networks. Since the sensor nodes are resource-limited in the wireless networks, how to design an efficient and secure protocol is extremely significant. The current authentication protocols have the problem that the sensor nodes need to execute heavy calculation and communication consumption during the authentication process and cannot resist node capture attack, and the protocols also cannot provide perfect forward and backward security and cannot resist replay attack. Multifactor identity authentication protocols can provide a higher rank of security than single-factor and two-factor identity authentication protocols. The multigateway wireless sensor networks’ structure can provide a larger communication coverage area than the single-gateway network structure, so it has become the focus of recent studies. Therefore, we design a novel multifactor authentication protocol for multigateway wireless sensor networks, which only apply the lightweight hash function and are given biometric information to achieve a higher level of security and efficiency and a larger communication coverage area. We separately apply BAN logic, random oracle model, and AVISPA tool to validate the security of our authentication protocol in Case 1 and Case 2. We put forward sixteen evaluation criteria to comprehensively evaluate our authentication protocol. Compared with the related authentication protocols, our authentication protocol is able to achieve higher security and efficiency.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3191 ◽  
Author(s):  
SungJin Yu ◽  
JoonYoung Lee ◽  
KyungKeun Lee ◽  
KiSung Park ◽  
YoungHo Park

With wireless sensor networks (WSNs), a driver can access various useful information for convenient driving, such as traffic congestion, emergence, vehicle accidents, and speed. However, a driver and traffic manager can be vulnerable to various attacks because such information is transmitted through a public channel. Therefore, secure mutual authentication has become an important security issue, and many authentication schemes have been proposed. In 2017, Mohit et al. proposed an authentication protocol for WSNs in vehicular communications to ensure secure mutual authentication. However, their scheme cannot resist various attacks such as impersonation and trace attacks, and their scheme cannot provide secure mutual authentication, session key security, and anonymity. In this paper, we propose a secure authentication protocol for WSNs in vehicular communications to resolve the security weaknesses of Mohit et al.’s scheme. Our authentication protocol prevents various attacks and achieves secure mutual authentication and anonymity by using dynamic parameters that are changed every session. We prove that our protocol provides secure mutual authentication by using the Burrows–Abadi–Needham logic, which is a widely accepted formal security analysis. We perform a formal security verification by using the well-known Automated Validation of Internet Security Protocols and Applications tool, which shows that the proposed protocol is safe against replay and man-in-the-middle attacks. We compare the performance and security properties of our protocol with other related schemes. Overall, the proposed protocol provides better security features and a comparable computation cost. Therefore, the proposed protocol can be applied to practical WSNs-based vehicular communications.


Sign in / Sign up

Export Citation Format

Share Document