scholarly journals Relevance of Drift Components and Unit-to-Unit Variability in the Predictive Maintenance of Low-Cost Electrochemical Sensor Systems in Air Quality Monitoring

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3298
Author(s):  
Georgi Tancev

As key components of low-cost sensor systems in air quality monitoring, electrochemical gas sensors have recently received a lot of interest but suffer from unit-to-unit variability and different drift components such as aging and concept drift, depending on the calibration approach. Magnitudes of drift can vary across sensors of the same type, and uniform recalibration intervals might lead to insufficient performance for some sensors. This publication evaluates the opportunity to perform predictive maintenance solely by the use of calibration data, thereby detecting the optimal moment for recalibration and improving recalibration intervals and measurement results. Specifically, the idea is to define confidence regions around the calibration data and to monitor the relative position of incoming sensor signals during operation. The emphasis lies on four algorithms from unsupervised anomaly detection—namely, robust covariance, local outlier factor, one-class support vector machine, and isolation forest. Moreover, the behavior of unit-to-unit variability and various drift components on the performance of the algorithms is discussed by analyzing published field experiments and by performing Monte Carlo simulations based on sensing and aging models. Although unsupervised anomaly detection on calibration data can disclose the reliability of measurement results, simulation results suggest that this does not translate to every sensor system due to unfavorable arrangements of baseline drifts paired with sensitivity drift.

Proceedings ◽  
2017 ◽  
Vol 1 (4) ◽  
pp. 573 ◽  
Author(s):  
Michele Penza ◽  
Domenico Suriano ◽  
Valerio Pfister ◽  
Mario Prato ◽  
Gennaro Cassano

2015 ◽  
Author(s):  
D. Suriano ◽  
M. Prato ◽  
V. Pfister ◽  
G. Cassano ◽  
G. Camporeale ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4781
Author(s):  
Diego Sales-Lérida ◽  
Alfonso J. Bello ◽  
Alberto Sánchez-Alzola ◽  
Pedro Manuel Martínez-Jiménez

Good air quality is essential for both human beings and the environment in general. The three most harmful air pollutants are nitrogen dioxide (NO2), ozone (O3) and particulate matter. Due to the high cost of monitoring stations, few examples of this type of infrastructure exist, and the use of low-cost sensors could help in air quality monitoring. The cost of metal-oxide sensors (MOS) is usually below EUR 10 and they maintain small dimensions, but their use in air quality monitoring is only valid through an exhaustive calibration process and subsequent precision analysis. We present an on-field calibration technique, based on the least squares method, to fit regression models for low-cost MOS sensors, one that has two main advantages: it can be easily applied by non-expert operators, and it can be used even with only a small amount of calibration data. In addition, the proposed method is adaptive, and the calibration can be refined as more data becomes available. We apply and evaluate the technique with a real dataset from a particular area in the south of Spain (Granada city). The evaluation results show that, despite the simplicity of the technique and the low quantity of data, the accuracy obtained with the low-cost MOS sensors is high enough to be used for air quality monitoring.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6198
Author(s):  
Georgi Tancev ◽  
Céline Pascale

This publication revises the deteriorated performance of field calibrated low-cost sensor systems after spatial and temporal relocation, which is often reported for air quality monitoring devices that use machine learning models as part of their software to compensate for cross-sensitivities or interferences with environmental parameters. The cause of this relocation problem and its relationship to the chosen algorithm is elucidated using published experimental data in combination with techniques from data science. Thus, the origin is traced back to insufficient sampling of data that is used for calibration followed by the incorporation of bias into models. Biases often stem from non-representative data and are a common problem in machine learning, and more generally in artificial intelligence, and as such a rising concern. Finally, bias is believed to be partly reducible in this specific application by using balanced data sets generated in well-controlled laboratory experiments, although not trivial due to the need for infrastructure and professional competence.


Author(s):  
A. Hernández-Gordillo ◽  
S. Ruiz-Correa ◽  
V. Robledo-Valero ◽  
C. Hernández-Rosales ◽  
S. Arriaga

Author(s):  
Chekwube A. Okigbo ◽  
Amar Seeam ◽  
Shivanand P. Guness ◽  
Xavier Bellekens ◽  
Girish Bekaroo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document