scholarly journals Anomaly Detection Using Signal Segmentation and One-Class Classification in Diffusion Process of Semiconductor Manufacturing

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3880
Author(s):  
Kyuchang Chang ◽  
Youngji Yoo ◽  
Jun-Geol Baek

This paper proposes a new diagnostic method for sensor signals collected during semiconductor manufacturing. These signals provide important information for predicting the quality and yield of the finished product. Much of the data gathered during this process is time series data for fault detection and classification (FDC) in real time. This means that time series classification (TSC) must be performed during fabrication. With advances in semiconductor manufacturing, the distinction between normal and abnormal data has become increasingly significant as new challenges arise in their identification. One challenge is that an extremely high FDC performance is required, which directly impacts productivity and yield. However, general classification algorithms can have difficulty separating normal and abnormal data because of subtle differences. Another challenge is that the frequency of abnormal data is remarkably low. Hence, engineers can use only normal data to develop their models. This study presents a method that overcomes these problems and improves the FDC performance; it consists of two phases. Phase I has three steps: signal segmentation, feature extraction based on local outlier factors (LOF), and one-class classification (OCC) modeling using the isolation forest (iF) algorithm. Phase II, the test stage, consists of three steps: signal segmentation, feature extraction, and anomaly detection. The performance of the proposed method is superior to that of other baseline methods.

2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Hajar Homayouni ◽  
Indrakshi Ray ◽  
Sudipto Ghosh ◽  
Shlok Gondalia ◽  
Michael G. Kahn

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

2021 ◽  
pp. 129-140
Author(s):  
Sanket Mishra ◽  
Varad Kshirsagar ◽  
Rohit Dwivedula ◽  
Chittaranjan Hota

Sign in / Sign up

Export Citation Format

Share Document