scholarly journals A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7834
Author(s):  
Marco Olivieri ◽  
Mirco Pezzoli ◽  
Fabio Antonacci ◽  
Augusto Sarti

In this manuscript, we describe a novel methodology for nearfield acoustic holography (NAH). The proposed technique is based on convolutional neural networks, with autoencoder architecture, to reconstruct the pressure and velocity fields on the surface of the vibrating structure using the sampled pressure soundfield on the holographic plane as input. The loss function used for training the network is based on a combination of two components. The first component is the error in the reconstructed velocity. The second component is the error between the sound pressure on the holographic plane and its estimate obtained from forward propagating the pressure and velocity fields on the structure through the Kirchhoff–Helmholtz integral; thus, bringing some knowledge about the physics of the process under study into the estimation algorithm. Due to the explicit presence of the Kirchhoff–Helmholtz integral in the loss function, we name the proposed technique the Kirchhoff–Helmholtz-based convolutional neural network, KHCNN. KHCNN has been tested on two large datasets of rectangular plates and violin shells. Results show that it attains very good accuracy, with a gain in the NMSE of the estimated velocity field that can top 10 dB, with respect to state-of-the-art techniques. The same trend is observed if the normalized cross correlation is used as a metric.

2019 ◽  
Vol 60 (5) ◽  
pp. 685-693 ◽  
Author(s):  
Tomohiro Kajikawa ◽  
Noriyuki Kadoya ◽  
Kengo Ito ◽  
Yoshiki Takayama ◽  
Takahito Chiba ◽  
...  

Abstract The purpose of the study was to compare a 3D convolutional neural network (CNN) with the conventional machine learning method for predicting intensity-modulated radiation therapy (IMRT) dose distribution using only contours in prostate cancer. In this study, which included 95 IMRT-treated prostate cancer patients with available dose distributions and contours for planning target volume (PTVs) and organs at risk (OARs), a supervised-learning approach was used for training, where the dose for a voxel set in the dataset was defined as the label. The adaptive moment estimation algorithm was employed for optimizing a 3D U-net similar network. Eighty cases were used for the training and validation set in 5-fold cross-validation, and the remaining 15 cases were used as the test set. The predicted dose distributions were compared with the clinical dose distributions, and the model performance was evaluated by comparison with RapidPlan™. Dose–volume histogram (DVH) parameters were calculated for each contour as evaluation indexes. The mean absolute errors (MAE) with one standard deviation (1SD) between the clinical and CNN-predicted doses were 1.10% ± 0.64%, 2.50% ± 1.17%, 2.04% ± 1.40%, and 2.08% ± 1.99% for D2, D98 in PTV-1 and V65 in rectum and V65 in bladder, respectively, whereas the MAEs with 1SD between the clinical and the RapidPlan™-generated doses were 1.01% ± 0.66%, 2.15% ± 1.25%, 5.34% ± 2.13% and 3.04% ± 1.79%, respectively. Our CNN model could predict dose distributions that were superior or comparable with that generated by RapidPlan™, suggesting the potential of CNN in dose distribution prediction.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


2014 ◽  
Vol 59 (4) ◽  
pp. 1061-1076 ◽  
Author(s):  
D.C. Panigrahi ◽  
S.K. Ray

Abstract The paper addresses an electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian Coalfields have been used for this experimental investigation and 936 experiments have been carried out by varying different experimental conditions to standardize this method for wider application. Thus for a particular sample 12 experiments of wet oxidation potential method were carried out. The results of wet oxidation potential (WOP) method have been correlated with the intrinsic properties of coal by carrying out proximate, ultimate and petrographic analyses of the coal samples. Correlation studies have been carried out with Design Expert 7.0.0 software. Further, artificial neural network (ANN) analysis was performed to ensure best combination of experimental conditions to be used for obtaining optimum results in this method. All the above mentioned analysis clearly spelt out that the experimental conditions should be 0.2 N KMnO4 solution with 1 N KOH at 45°C to achieve optimum results for finding out the susceptibility of coal to spontaneous combustion. The results have been validated with Crossing Point Temperature (CPT) data which is widely used in Indian mining scenario.


1997 ◽  
Author(s):  
Daniel Benzing ◽  
Kevin Whitaker ◽  
Dedra Moore ◽  
Daniel Benzing ◽  
Kevin Whitaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document