scholarly journals Visual Perceptual Quality Assessment Based on Blind Machine Learning Techniques

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 175
Author(s):  
Ghislain Takam Tchendjou ◽  
Emmanuel Simeu

This paper presents the construction of a new objective method for estimation of visual perceiving quality. The proposal provides an assessment of image quality without the need for a reference image or a specific distortion assumption. Two main processes have been used to build our models: The first one uses deep learning with a convolutional neural network process, without any preprocessing. The second objective visual quality is computed by pooling several image features extracted from different concepts: the natural scene statistic in the spatial domain, the gradient magnitude, the Laplacian of Gaussian, as well as the spectral and spatial entropies. The features extracted from the image file are used as the input of machine learning techniques to build the models that are used to estimate the visual quality level of any image. For the machine learning training phase, two main processes are proposed: The first proposed process consists of a direct learning using all the selected features in only one training phase, named direct learning blind visual quality assessment DLBQA. The second process is an indirect learning and consists of two training phases, named indirect learning blind visual quality assessment ILBQA. This second process includes an additional phase of construction of intermediary metrics used for the construction of the prediction model. The produced models are evaluated on many benchmarks image databases as TID2013, LIVE, and LIVE in the wild image quality challenge. The experimental results demonstrate that the proposed models produce the best visual perception quality prediction, compared to the state-of-the-art models. The proposed models have been implemented on an FPGA platform to demonstrate the feasibility of integrating the proposed solution on an image sensor.

2019 ◽  
pp. 469-487
Author(s):  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Padraig Corcoran ◽  
Amerah Alghanim

Nowadays an ever-increasing number of applications require complete and up-to-date spatial data, in particular maps. However, mapping is an expensive process and the vastness and dynamics of our world usually render centralized and authoritative maps outdated and incomplete. In this context crowd-sourced maps have the potential to provide a complete, up-to-date, and free representation of our world. However, the proliferation of such maps largely remains limited due to concerns about their data quality. While most of the current data quality assessment mechanisms for such maps require referencing to authoritative maps, we argue that such referencing of a crowd-sourced spatial database is ineffective. Instead we focus on the use of machine learning techniques that we believe have the potential to not only allow the assessment but also to recommend the improvement of the quality of crowd-sourced maps without referencing to external databases. This chapter gives an overview of these approaches.


2021 ◽  
Vol 2021 (1) ◽  
pp. 1-4
Author(s):  
Seyed Ali Amirshahi

Quality assessment of images plays an important role in different applications in image processing and computer vision. While subjective quality assessment of images is the most accurate approach due to issues objective quality metrics have been the go to approach. Until recently most such metrics have taken advantage of different handcrafted features. Similar (but with a slower speed) to other applications in image processing and computer vision, different machine learning techniques, more specifically Convolutional Neural Networks (CNNs) have been introduced in different tasks related to image quality assessment. In this short paper which is a supplement to a focal talk given with the same title at the London Imaging Meeting (LIM) 2021 we aim to provide a short timeline on how CNNs have been used in the field of image quality assessment so far, how the field could take advantage of CNNs to evaluate the image quality, and what we expect will happen in the near future.


2012 ◽  
Author(s):  
Nikolay N. Ponomarenko ◽  
Vladimir V. Lukin ◽  
Oleg I. Eremeev ◽  
Karen O. Egiazarian ◽  
Jaakko T. Astola

Sign in / Sign up

Export Citation Format

Share Document