scholarly journals Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales

2019 ◽  
Vol 11 (20) ◽  
pp. 5592 ◽  
Author(s):  
Stefano Cascone ◽  
Gianpiero Evola ◽  
Antonio Gagliano ◽  
Gaetano Sciuto ◽  
Chiara Baroetto Parisi

This paper investigates the performance of timber-framed walls insulated with straw bales, and compares them with similar walls containing expanded polystyrene (EPS) instead of straw bales. First, thermal conductivity, initial water content, and density of the straw bales were experimentally measured in a laboratory set-up, and the dependence of the thermal conductivity of the dry material on temperature was described. Then, the two insulation solutions were compared by looking at their steady and periodic thermal transmittance, decrement factor, phase shift, internal areal heat capacity and surface mass. Finally, the acoustic performance of both wall typologies was analyzed by means of in situ measurements in two-story buildings built in Southern Italy. The weighted apparent sound reduction index for the partition wall between two houses and the weighted standardized level difference for the façades were assessed based on ISO Standard 16283. The results indicate that the dry straw bales have an average thermal conductivity of k = 0.0573 W/(m·K), and their density is around 80 kg/m3. In addition, straw bale walls have good steady thermal performance, but they still lack sufficient thermal inertia, as witnessed by the low phase shift and the high periodic thermal transmittance. Finally, according to the on-site measurements, the results underline that the acoustic performance of the straw bale walls is far better than the walls adopting traditional EPS insulation. Overall, the straw bales investigated are a promising natural and sustainable solution for thermal and sound insulation of buildings.

2021 ◽  
Author(s):  
Max Gerrit Adam ◽  
Robert Wegener ◽  
Franz Rohrer ◽  
Ralf Tillmann ◽  
Astrid Kiendler-Scharr ◽  
...  

<p>Langzeitmessungen der atmosphärischen Zusammensetzung sind von zentraler Bedeutung, um die Atmosphärenchemie und den Klimawandel zu verstehen. ACTRIS (Aerosol, Cloud and Trace Gases Research Infrastructure) hat sich zum Ziel gesetzt, ein europaweites Netzwerk von Beobachtungsstationen aufzubauen, die qualitativ hochwertige Daten und Informationen zu kurzlebigen atmosphärischen Bestandteilen liefern und für Nutzer auf der ganzen Welt offen zugänglich machen. Stickstoffmonoxid (NO) und Stickstoffdioxid (NO<sub>2</sub>), die sogenannten Stickoxide (NO<sub>x</sub>), spielen eine Schlüsselrolle in der Atmosphärenchemie, da sie zur Bildung von troposphärischem Ozon, Smog und saurem Regen beitragen. Darüber hinaus ist die kurz- und langfristige Exposition mit NO<sub>2</sub> mit negativen Auswirkungen auf das menschliche Atmungssystem in Verbindung gebracht worden. Die Hauptquellen von NO<sub>x</sub> in bewohnten Gebieten sind Verbrennungsprozesse, z.B. von Fahrzeugen und bei industriellen Aktivitäten. NO<sub>x</sub>-Messungen werden derzeit meist indirekt über Chemilumineszenz-Instrumente durchgeführt, die Korrekturen für Feuchte und Ozon erfordern. Jüngste technologische Fortschritte (z. B. Cavity Attenuated Phase Shift, CAPS, oder Tunable Diode Laser Systeme) erlauben die direkte Detektion von NO<sub>x</sub>-Komponenten, was Interferenzen vermeidet, die durch die Umwandlung von NO<sub>2</sub> in NO hervorgerufen werden. Messvergleiche zeigen aber, dass auch hier neben bekannten Problemen wie Reaktionen in den Einlassleitungen auch unerwartete Artefakte beobachtet werden können. Messvergleiche aber zeigen auch hier, dass neben bekannten Problemen wie Reaktionen in den Einlassleitungen auch unerwartete auftreten können. Um genaue und präzise NO<sub>x</sub> Messungen mit einer Vielzahl von NO<sub>x</sub>-Messsystemen in verschiedenen Stationen sicherzustellen, müssen neben der Standardisierung von Messprotokollen und Kalibrierungsverfahren auch an zentraler Stelle durch Messvergleiche und Auditierungen Unterschiede der verschiedenen Messverfahren dokumentiert werden.</p> <p>ACTRIS setzt sich aus central facilities (CFs) und national facilities (NFs) zusammen. Die NFs bilden den explorativen und beobachtenden Teil der Forschungsinfrastruktur. Die CFs sind von grundlegender Bedeutung für die Bereitstellung von harmonisierten und hochpräzisen Daten und stellen eine Vielzahl von Dienstleistungen zur Verfügung. Eines der CFs ist das Reactive Trace Gases In Situ Measurements (CiGas), das für die Überwachung der Datenqualität reaktiver Spurengase verantwortlich ist. Für die Qualitätssicherung (QA) und Qualitätskontrolle (QC) der Stickoxidmessungen an den NFs innerhalb von CiGas ist das Forschungszentrum Jülich (FZJ) zuständig, das auch das World Calibration Center (WCC) für Stickoxide im Global Atmosphere Watch (GAW) Netzwerk beheimatet. Seine Aufgaben umfassen i) die Verbindung von Spurengasmessungen von ACTRIS mit denen anderer Netzwerke, ii) die Beratung und Organisation von Schulungen, iii) die Bereitstellung von Mess- und Auswerteverfahren, iv) das Labelling und die Auditierung von NFs, v) die Implementierung neuer wissenschaftlicher und technologischer Entwicklungen.</p> <p>Es ist vorgesehen, bis 2025 ein zertifiziertes und funktionsfähiges Netzwerk von ACTRIS-Stationen aufzubauen. Es soll der wissenschaftlichen Gemeinschaft qualitativ hochwertige Daten liefern, die die Grundlage für fundierte Entscheidungen der politischen Entscheidungsträger bilden können.</p>


Author(s):  
D. Cundick ◽  
D. Maynes ◽  
T. Moore ◽  
D. R. Tree ◽  
M. R. Jones ◽  
...  

This work presents in situ measurements of the effective thermal conductivity in particulate coal ash deposits under both reducing and oxidizing environments. Laboratory experiments generated deposits on an instrumented deposition probe of loosely-bound particulate ash from three coals generated in a down-fired flow reactor with optical access. An approach is presented for making in situ measurements of the temperature difference across the ash deposits, the thickness of the deposits, and the total heat transfer rate through the ash deposits. Using this approach, the effective thermal conductivity was determined for coal ash deposits formed under oxidizing and reducing conditions. Three coals were tested under oxidizing conditions: two bituminous coals derived from the Illinois #6 basin and a subbituminous Powder River Basin coal. The subbituminous coal exhibited the lowest range of effective thermal conductivities (0.05–0.18 W/m· K) while the Illinois #6 coals showed higher effective thermal conductivities (0.2–0.5 W/m· K). One of the bituminous coals and the subbituminous coal were also tested under reducing conditions. A comparison of the ash deposits from these two coals showed no discernible difference in the effective thermal conductivity based on stoichiometry. All experiments indicated an increase in effective thermal conductivity with deposit thickness, probably associated with deposit sintering.


2011 ◽  
Vol 3 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Marius Mickaitis ◽  
Aleksandras Jagniatinskis ◽  
Boris Fiks

For the purposes of accumulating knowledge of how to comply with requirements for new buildings of obligatory sound class C or enhanced acoustic comfort sound classes A and B (Lithuanian Building Technical regulations STR 2.01.07:2003), the article discusses improvement on airborne sound insulation of partitions between dwellings using additional plasterboard layers. The results of an empirical approach were obtained performing in situ measurements of the partitions of masonry from silicate blocks and expanded-clay concrete blocks. Theoretical calculations without the evaluation of flanking paths are added. The paper looks at the peculiarities of in situ measurement methods and the estimation of the limiting uncertainty of the sound reduction index. It is showed that the values of the in situ measurements of the airborne sound reduction index in accordance with requirements EN ISO 140 and EN ISO 717 series for rooms having volume higher than 50 m3 varies depending on frequency range. It has been stated, that improvement on the weighed airborne sound reduction index in the frequency range from 100 Hz to 3150 Hz depends on the properties of additional layers and on the characteristics of the main constructions. Resonance in the low frequency range arising due to additional layers may reduce the weighed airborne sound reduction index defined in the frequency range from 50 Hz to 3150 Hz. This fact must be taken into account when designing improvement on masonry wall insulation using an additional layer in dwellings.


Sign in / Sign up

Export Citation Format

Share Document