reducing conditions
Recently Published Documents


TOTAL DOCUMENTS

1544
(FIVE YEARS 275)

H-INDEX

76
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Martyna Cybularczyk-Cecotka ◽  
Jędrzej Predygier ◽  
Stefano Crespi ◽  
Joanna Szczepanik ◽  
Maciej Giedyk

Micellar photocatalysis has recently opened new avenues to activate strong carbon halide bonds. So far, however, it has mainly explored strongly reducing conditions restricting the available chemical space to radical or anionic reactivity. Here, we demonstrate a radical-polar crossover process involving cationic intermediates, which enables chemodivergent modification of chlorinated benzamide derivatives via either C H arylation or N dealkylation. The catalytic system operates under mild conditions employing methylene blue as a photocatalyst and blue LEDs as the light source. Factors determining the reactivity of substrates and preliminary mechanistic studies are presented.


2021 ◽  
Author(s):  
Dong Xia ◽  
Hanbin Zhao ◽  
Sohei Kobayashi ◽  
Qi Mi ◽  
Aimin Hao ◽  
...  

Abstract Black-odorous urban water bodies and sediments pose a serious environmental problem. Herein, we conducted microcosm batch experiments to investigate the effect of remediation reagents (magnesium hydroxide and calcium nitrate) on native bacterial communities and their ecological functions in the black-odorous sediment of urban water. The dominant phyla (Proteobacteria, Actinobacteria, Chloroflexi, and Planctomycetes) and classes (Alpha-, Beta-, and Gamma-proteobacteria, Actinobacteria, Anaerolineae, and Planctomycetia) were determined under calcium nitrate and magnesium hydroxide treatments. Functional groups related to aerobic metabolism, including aerobic chemoheterotrophy, dark sulfide oxidation, and correlated dominant genera (Thiobacillus, Lysobacter, Gp16, and Gaiella) became more abundant under calcium nitrate treatment, whereas functional genes potentially involved in dissimilatory sulfate reduction became less abundant. The relative abundance of chloroplasts, fermentation, and correlated genera (Desulfomonile and unclassified Cyanobacteria) decreased under magnesium hydroxide treatment. These results indicated that calcium nitrate addition improved hypoxia-related reducing conditions in the sediment and promoted aerobic chemoheterotrophy.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Evgenia V. Airiyants ◽  
Olga N. Kiseleva ◽  
Sergey M. Zhmodik ◽  
Dmitriy K. Belyanin ◽  
Yuriy C. Ochirov

The platinum-group minerals (PGM) in placer deposits provide important information on the types of their primary source rocks and ores and formation and alteration conditions. The article shows for the first time the results of a study of placer platinum mineralization found in the upper reaches of the Kitoy River (the southeastern part of the Eastern Sayan (SEPES)). Using modern methods of analysis (scanning electron microscopy), the authors studied the microtextural features of platinum-group minerals (PGM), their composition, texture, morphology and composition of microinclusions, rims, and other types of changes. The PGM are Os‑Ir‑Ru alloys with a pronounced ruthenium trend. Many of the Os‑Ir‑Ru grains have porous, fractured, or altered rims that contain secondary PGE sulfides, arsenides, sulfarsenides, Ir-Ni-Fe alloys, and rarer selenides, arsenoselenides, and tellurides of the PGE. The data obtained made it possible to identify the root sources of PGM in the placer and to make assumptions about the stages of transformation of primary igneous Os-Ir-Ru alloys from bedrock to placer. We assume that there are several stages of alteration of high-temperature Os-Ir-Ru alloys. The late magmatic stage is associated with the effect of fluid-saturated residual melt enriched with S, As. The post-magmatic hydrothermal stage (under conditions of changing reducing conditions to oxidative ones) is associated with the formation of telluro-selenides and oxide phases of PGE. The preservation of poorly rounded and unrounded PGM grains in the placer suggests a short transport from their primary source. The source of the platinum-group minerals from the Kitoy River placer is the rocks of the Southern ophiolite branch of SEPES and, in particular, the southern plate of the Ospa-Kitoy ophiolite complex, and primarily chromitites.


2021 ◽  
Author(s):  
Ayaka Takahashi ◽  
Hisaya Kojima ◽  
Miho Watanabe ◽  
Manabu Fukui

Abstract A novel mesophilic and neutrophilic sulfate-reducing bacterium, strain SF6T, was isolated from sediment of a brackish lake in Japan. Cells of strain SF6T were motile and rod-shaped with length of 1.2–2.5 μm and width of 0.6–0.9 μm. Growth was observed at 10–37°C with an optimum growth temperature of 28°C. The pH range for growth was 5.8–8.2 with an optimum pH of 7.0. The most predominant fatty acid was anteiso-C15 : 0. Under sulfate-reducing conditions, strain SF6T utilized formate, lactate, ethanol and glucose as growth substrate. Chemolithoautotrophic growth on H2 was also observed. Fermentative growth occurred on pyruvate. As electron acceptor, sulfate, sulfite, thiosulfate and nitrate supported heterotrophic growth of the strain. The complete genome of strain SF6T is composed of a circular chromosome with length of 3.8 Mbp and G + C content of 54 mol%. Analyses of the 16S rRNA gene and whole genome sequence indicated that strain SF6T belongs to the genus Pseudodesulfovibrio but distinct form all existing species in the genus. On the basis of its genomic and phenotypic properties, strain SF6T (= DSM111931T = NBRC 114895T) is proposed as the type strain of a new species, with name of Pseudodesulfovibrio sediminis sp. nov.


Author(s):  
Yevgeniy Ostrovskiy ◽  
Yi-Lin Huang ◽  
Christopher Pellegrinelli ◽  
Mohammed Hussain Abdul Jabbar ◽  
Mann Sakbodin ◽  
...  

Abstract Protonic conductors are gaining use in solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) as well as for H2 separation membranes. However, for SOFC/SOEC electrode and membrane applications their performance is limited by low electronic conductivity. One of the most promising classes of ceramic proton conductors, perovskites, have highly-tunable compositions allowing for the optimization of both ionic and electronic conductivity. In this work Pr-doped SrCeO3 was studied over a wide range of oxygen partial pressures (pO2’s) and temperatures to determine its defect properties and conductivity. Under reducing conditions Pr-doped SrCeO3 was found to be chemically and structurally stable, with an optimal Pr doping level of 10%. This composition shows greater conductivity compared to previously reported Eu-doped SrCeO3. Under low pO2 Pr-doped SrCeO3 exhibited n-type behavior as conductivity increased with decreasing pO2, suggesting that the electronic conductivity of SrCeO3 is significantly enhanced by Pr doping. Under high pO2 conditions, Pr-doped SrCeO3 exhibited p-type conductivity with higher conductivity in the presence of water affirming its protonic conductivity. This work validates the use of Pr as a means of enhancing electronic conductivity in proton conducting perovskites.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1394
Author(s):  
Tian Feng ◽  
Joshua Abbatiello ◽  
Arthur Omran ◽  
Christopher Mehta ◽  
Matthew A. Pasek

Iron silicide minerals (Fe-Si group) are found in terrestrial and solar system samples. These minerals tend to be more common in extraterrestrial rocks such as meteorites, and their existence in terrestrial rocks is limited due to a requirement of extremely reducing conditions to promote their formation. Such extremely reducing conditions can be found in fulgurites, which are glasses formed as cloud-to-ground lightning heats and fuses sand, soil, or rock. The objective of this paper is to review reports of iron silicides in fulgurites, note any similarities between separate fulgurite observations, and to explain the core connection between geological environments wherein these minerals are found. In addition, we also compare iron silicides in fulgurites to those in extraterrestrial samples.


Author(s):  
Tawney Knecht ◽  
Shannon W. Boettcher ◽  
James Hutchison

Abstract The electrochemical reduction of CO2 into fuels using renewable electricity presents an opportunity to utilize captured CO2. Electrocatalyst development has been the primary focus of research in this area. This is especially true at the nanoscale, where researchers have focused on understanding nanostructure-property relationships. However, electrocatalyst structure may evolve during operation. Indium- and tin-based oxides have been widely studied as electrocatalysts for CO2 reduction to formate, but evolution of these catalysts during operation is not well-characterized. Here, we report the evolution of nanoscale structure of tin-doped indium oxide nanocrystals under CO2 reduction conditions. We show that sparse monolayer nanocrystal films desorb from the electrode upon charging, but thicker nanocrystal films remain, likely due to increased number of physical contacts. Upon applying a cathodic voltage of -1.0 V vs RHE or greater, the original 10-nm diameter nanocrystals are no longer visible, and instead form a larger microstructural network. Elemental analysis suggests the network is an oxygen-deficient indium-tin metal alloy. We hypothesize that this morphological evolution is the result of nanocrystal sintering due to oxide reduction. These data provide insights into the morphological evolution tin-doped indium oxide nanocrystal electrocatalysts under reducing conditions and highlight the importance of post-electrochemical structural characterization of electrocatalysts.


2021 ◽  
Author(s):  
Ricardo Choque-Guevara ◽  
Astrid Poma-Acevedo ◽  
Ricardo Montesinos-Millan ◽  
Dora Rios-Matos ◽  
Kristel Gutierrez-Manchay ◽  
...  

COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus requires new immunization strategies in addition to the current vaccines approved for human administration. In the present report, the immunological and safety evaluation in mice and hamsters of a subunit vaccine based on the RBD sub-domain with two adjuvants of oil origin is described. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays in mice and hamsters, the purified RBD formulated with adjuvants based on oil-water emulsifications and squalene was able to stimulate specific neutralizing antibodies and confirm the secretion of IFN-γ after stimulating spleen cells with the purified RBD. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results demonstrate the potential of the purified RBD administered with adjuvants through an intramuscular route, to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection against infection.


2021 ◽  
Vol 118 (49) ◽  
pp. e2112817118
Author(s):  
Jacob S. Higgins ◽  
Marco A. Allodi ◽  
Lawson T. Lloyd ◽  
John P. Otto ◽  
Sara H. Sohail ◽  
...  

Quantum coherences, observed as time-dependent beats in ultrafast spectroscopic experiments, arise when light–matter interactions prepare systems in superpositions of states with differing energy and fixed phase across the ensemble. Such coherences have been observed in photosynthetic systems following ultrafast laser excitation, but what these coherences imply about the underlying energy transfer dynamics remains subject to debate. Recent work showed that redox conditions tune vibronic coupling in the Fenna–Matthews–Olson (FMO) pigment–protein complex in green sulfur bacteria, raising the question of whether redox conditions may also affect the long-lived (>100 fs) quantum coherences observed in this complex. In this work, we perform ultrafast two-dimensional electronic spectroscopy measurements on the FMO complex under both oxidizing and reducing conditions. We observe that many excited-state coherences are exclusively present in reducing conditions and are absent or attenuated in oxidizing conditions. Reducing conditions mimic the natural conditions of the complex more closely. Further, the presence of these coherences correlates with the vibronic coupling that produces faster, more efficient energy transfer through the complex under reducing conditions. The growth of coherences across the waiting time and the number of beating frequencies across hundreds of wavenumbers in the power spectra suggest that the beats are excited-state coherences with a mostly vibrational character whose phase relationship is maintained through the energy transfer process. Our results suggest that excitonic energy transfer proceeds through a coherent mechanism in this complex and that the coherences may provide a tool to disentangle coherent relaxation from energy transfer driven by stochastic environmental fluctuations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jafar K. Lone ◽  
Mandapanda A. Lekha ◽  
Rajiv P. Bharadwaj ◽  
Fasil Ali ◽  
M. Arumugam Pillai ◽  
...  

A Bowman-Birk protease, i.e., Mucuna pruriens trypsin inhibitor (MPTI), was purified from the seeds by 55.702-fold and revealed a single trypsin inhibitor on a zymogram with a specific activity of 202.31 TIU/mg of protein. On sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) under non-reducing conditions, the protease trypsin inhibitor fraction [i.e., trypsin inhibitor non-reducing (TINR)] exhibited molecular weights of 74 and 37 kDa, and under reducing conditions [i.e., trypsin inhibitor reducing (TIR)], 37 and 18 kDa. TINR-37 revealed protease inhibitor activity on native PAGE and 37 and 18 kDa protein bands on SDS–PAGE. TINR-74 showed peaks corresponding to 18.695, 37.39, 56.085, and 74.78 kDa on ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization/quadrupole time-of-flight-mass spectrometry (ESI/QTOF-MS). Similarly, TINR-37 displayed 18.695 and 37.39 kDa peaks. Furthermore, TIR-37 and TIR-18 exhibited peaks corresponding to 37.39 and 18.695 kDa. Multiple peaks observed by the UPLC-ESI/QTOF analysis revealed the multimeric association, confirming the characteristic and functional features of Bowman-Birk inhibitors (BBIs). The multimeric association helps to achieve more stability, thus enhancing their functional efficiency. MPTI was found to be a competitive inhibitor which again suggested that it belongs to the BBI family of inhibitors, displayed an inhibitor constant of 1.3 × 10–6 M, and further demonstrates potent anti-inflammatory activity. The study provided a comprehensive basis for the identification of multimeric associates and their therapeutic potential, which could elaborate the stability and functional efficiency of the MPTI in the native state from M. pruriens.


Sign in / Sign up

Export Citation Format

Share Document