scholarly journals A Novel Computational Technique for Impulsive Fractional Differential Equations

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 216 ◽  
Author(s):  
Changyou Ma

A computational technique for impulsive fractional differential equations is proposed in this paper. Adomian decomposition method plays an efficient role for approximate analytical solutions for ordinary or fractional calculus. Semi-analytical method is proposed by use of the Adomian polynomials. The method successively updates the initial values and gives the numerical solutions on different impulsive intervals. As one of the numerical examples, an impulsive fractional logistic differential equation is given to illustrate the method.

Author(s):  
Neda Khodabakhshi ◽  
S. Mansour Vaezpour ◽  
Dumitru Baleanu

AbstractIn this paper, we extend a reliable modification of the Adomian decomposition method presented in [34] for solving initial value problem for fractional differential equations.In order to confirm the applicability and the advantages of our approach, we consider some illustrative examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohamed Z. Mohamed ◽  
Tarig M. Elzaki ◽  
Mohamed S. Algolam ◽  
Eltaib M. Abd Elmohmoud ◽  
Amjad E. Hamza

The objective of this paper is to compute the new modified method of variational iteration and the Laplace Adomian decomposition method for the solution of nonlinear fractional partial differential equations. We execute a comparatively newfangled analytical mechanism that is denoted by the modified Laplace variational iteration method (MLVIM) and Laplace Adomian decomposition method (LADM). The effect of the numerical results indicates that the double approximation is handy to execute and reliable when applied. It is shown that numerical solutions are gained in the form of approximately series which are facilely computable.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Fazal Haq ◽  
Muhammad Shahzad ◽  
Shakoor Muhammad ◽  
Hafiz Abdul Wahab ◽  
Ghaus ur Rahman

The fractional order Susceptible-Infected-Recovered (SIR) epidemic model of childhood disease is considered. Laplace–Adomian Decomposition Method is used to compute an approximate solution of the system of nonlinear fractional differential equations. We obtain the solutions of fractional differential equations in the form of infinite series. The series solution of the proposed model converges rapidly to its exact value. The obtained results are compared with the classical case.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Moh’d Khier Al-Srihin ◽  
Mohammed Al-Refai

In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.


Sign in / Sign up

Export Citation Format

Share Document