scholarly journals New Modified Variational Iteration Laplace Transform Method Compares Laplace Adomian Decomposition Method for Solution Time-Partial Fractional Differential Equations

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohamed Z. Mohamed ◽  
Tarig M. Elzaki ◽  
Mohamed S. Algolam ◽  
Eltaib M. Abd Elmohmoud ◽  
Amjad E. Hamza

The objective of this paper is to compute the new modified method of variational iteration and the Laplace Adomian decomposition method for the solution of nonlinear fractional partial differential equations. We execute a comparatively newfangled analytical mechanism that is denoted by the modified Laplace variational iteration method (MLVIM) and Laplace Adomian decomposition method (LADM). The effect of the numerical results indicates that the double approximation is handy to execute and reliable when applied. It is shown that numerical solutions are gained in the form of approximately series which are facilely computable.


Matematika ◽  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Muhamad Deni Johansyah ◽  
Herlina Napitupulu ◽  
Erwin Harahap ◽  
Ira Sumiati ◽  
Asep K. Supriatna

Abstrak. Pada umumnya orde dari persamaan diferensial adalah bilangan asli, namun orde pada persamaan diferensial dapat dibentuk menjadi orde pecahan yang disebut persamaan diferensial fraksional. Paper ini membahas persamaan diferensial fraksional Riccati dengan orde diantara nol dan satu, dan koefisien konstan. Metode numerik yang digunakan untuk mendapatkan solusi dari persamaan diferensial fraksional Riccati adalah Adomian Decomposition Method (ADM) dan Variational Iteration Method (VIM). Tujuan dari paper ini adalah untuk memperluas penerapan ADM dan VIM dalam menyelesaikan persamaan diferensial fraksional Riccati nonlinear dengan turunan Caputo. Perbandingan solusi yang diperoleh menunjukkan bahwa VIM adalah metode yang lebih sederhana untuk mencari solusi persamaan diferensial fraksional Riccati nonlinier dengan orde antara nol dan satu, kemudian hasil yang diperoleh disajikan dalam bentuk grafik.Kata kunci: diferensial, fraksional, riccati, adomian dekomposisiThe solution of Riccati Fractional Differential Equation using Adomian Decomposition methodAbstract. Generally, the order of differential equations is a natural numbers, but this order can be formed into fractional, called as fractional differential equations.  In this paper, the Riccati fractional differential equations with order between zero and one, and constant coefficient is discussed.  The numerical methods used to obtain solutions from Riccati fractional differential equations are the Adomian Decomposition Method (ADM) and Variational Iteration Method (VIM).  The aim of this paper is to expand the application of ADM and VIM in solving nonlinear Riccati fractional differential equations with Caputo derivatives.  The comparison of the obtained solutions shows that VIM is simpler method for finding solutions to Riccati nonlinear fractional differential equations with order between zero and one. The obtained results are presented graphically.Keywords: riccati, fractional, differential, adomian, decomposition



Author(s):  
Neda Khodabakhshi ◽  
S. Mansour Vaezpour ◽  
Dumitru Baleanu

AbstractIn this paper, we extend a reliable modification of the Adomian decomposition method presented in [34] for solving initial value problem for fractional differential equations.In order to confirm the applicability and the advantages of our approach, we consider some illustrative examples.



2019 ◽  
pp. 2207-2222
Author(s):  
Shazad Sh. Ahmed ◽  
Shokhan Ahmed Hama Salih ◽  
Mariwan R. Ahmed

In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical purposes. Finally, examples are prepared to illustrate these considerations.



Sign in / Sign up

Export Citation Format

Share Document