scholarly journals Some Real-Life Applications of a Newly Constructed Derivative Free Iterative Scheme

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 239 ◽  
Author(s):  
Ramandeep Behl ◽  
M. Salimi ◽  
M. Ferrara ◽  
S. Sharifi ◽  
Samaher Alharbi

In this study, we present a new higher-order scheme without memory for simple zeros which has two major advantages. The first one is that each member of our scheme is derivative free and the second one is that the present scheme is capable of producing many new optimal family of eighth-order methods from every 4-order optimal derivative free scheme (available in the literature) whose first substep employs a Steffensen or a Steffensen-like method. In addition, the theoretical and computational properties of the present scheme are fully investigated along with the main theorem, which demonstrates the convergence order and asymptotic error constant. Moreover, the effectiveness of our scheme is tested on several real-life problems like Van der Waal’s, fractional transformation in a chemical reactor, chemical engineering, adiabatic flame temperature, etc. In comparison with the existing robust techniques, the iterative methods in the new family perform better in the considered test examples. The study of dynamics on the proposed iterative methods also confirms this fact via basins of attraction applied to a number of test functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia Cordero ◽  
Moin-ud-Din Junjua ◽  
Juan R. Torregrosa ◽  
Nusrat Yasmin ◽  
Fiza Zafar

We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.



Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Deepak Kumar ◽  
Sunil Kumar ◽  
Janak Raj Sharma ◽  
Matteo d’Amore

There are a few optimal eighth order methods in literature for computing multiple zeros of a nonlinear function. Therefore, in this work our main focus is on developing a new family of optimal eighth order iterative methods for multiple zeros. The applicability of proposed methods is demonstrated on some real life and academic problems that illustrate the efficient convergence behavior. It is shown that the newly developed schemes are able to compete with other methods in terms of numerical error, convergence and computational time. Stability is also demonstrated by means of a pictorial tool, namely, basins of attraction that have the fractal-like shapes along the borders through which basins are symmetric.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manpreet Kaur ◽  
Sanjeev Kumar ◽  
Munish Kansal

PurposeThe purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear problems.Design/methodology/approachThe scheme is generalized by using the power-mean notion. By applying Neville's interpolating technique, the methods are formulated into the derivative-free approaches. Further, to enhance the computational efficiency, the developed iterative methods have been extended to the methods with memory, with the aid of the self-accelerating parameter.FindingsIt is found that the presented family is optimal in terms of Kung and Traub conjecture as it evaluates only five functions in each iteration and attains convergence order sixteen. The proposed family is examined on some practical problems by modeling into nonlinear equations, such as chemical equilibrium problems, beam positioning problems, eigenvalue problems and fractional conversion in a chemical reactor. The obtained results confirm that the developed scheme works more adequately as compared to the existing methods from the literature. Furthermore, the basins of attraction of the different methods have been included to check the convergence in the complex plane.Originality/valueThe presented experiments show that the developed schemes are of great benefit to implement on real-life problems.



2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Anuradha Singh ◽  
J. P. Jaiswal

The prime objective of this paper is to design a new family of optimal eighth-order iterative methods by accelerating the order of convergence of the existing seventh-order method without using more evaluations for finding simple root of nonlinear equations. Numerical comparisons have been carried out to demonstrate the efficiency and performance of the proposed method. Finally, we have compared new method with some existing eighth-order methods by basins of attraction and observed that the proposed scheme is more efficient.



Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.



Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 310 ◽  
Author(s):  
Fiza Zafar ◽  
Alicia Cordero ◽  
Juan Torregrosa

Finding a repeated zero for a nonlinear equation f ( x ) = 0 , f : I ⊆ R → R has always been of much interest and attention due to its wide applications in many fields of science and engineering. Modified Newton’s method is usually applied to solve this kind of problems. Keeping in view that very few optimal higher-order convergent methods exist for multiple roots, we present a new family of optimal eighth-order convergent iterative methods for multiple roots with known multiplicity involving a multivariate weight function. The numerical performance of the proposed methods is analyzed extensively along with the basins of attractions. Real life models from life science, engineering, and physics are considered for the sake of comparison. The numerical experiments and dynamical analysis show that our proposed methods are efficient for determining multiple roots of nonlinear equations.





Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 672 ◽  
Author(s):  
Saima Akram ◽  
Fiza Zafar ◽  
Nusrat Yasmin

In this paper, we introduce a new family of efficient and optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity ( m ≥ 1 ) . We use the weight function approach involving one and two parameters to develop the new family. A comprehensive convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results formulated in this paper and illustrates that the suggested family is efficient among the domain of multiple root finding methods.



2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rajinder Thukral

A new family of eighth-order derivative-free methods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured that the multipoint iteration methods, without memory based onnevaluations could achieve optimal convergence order of . Thus, we present new derivative-free methods which agree with Kung and Traub conjecture for . Numerical comparisons are made to demonstrate the performance of the methods presented.



Sign in / Sign up

Export Citation Format

Share Document