scholarly journals An Efficient Family of Optimal Eighth-Order Multiple Root Finders

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 310 ◽  
Author(s):  
Fiza Zafar ◽  
Alicia Cordero ◽  
Juan Torregrosa

Finding a repeated zero for a nonlinear equation f ( x ) = 0 , f : I ⊆ R → R has always been of much interest and attention due to its wide applications in many fields of science and engineering. Modified Newton’s method is usually applied to solve this kind of problems. Keeping in view that very few optimal higher-order convergent methods exist for multiple roots, we present a new family of optimal eighth-order convergent iterative methods for multiple roots with known multiplicity involving a multivariate weight function. The numerical performance of the proposed methods is analyzed extensively along with the basins of attractions. Real life models from life science, engineering, and physics are considered for the sake of comparison. The numerical experiments and dynamical analysis show that our proposed methods are efficient for determining multiple roots of nonlinear equations.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Deepak Kumar ◽  
Sunil Kumar ◽  
Janak Raj Sharma ◽  
Matteo d’Amore

There are a few optimal eighth order methods in literature for computing multiple zeros of a nonlinear function. Therefore, in this work our main focus is on developing a new family of optimal eighth order iterative methods for multiple zeros. The applicability of proposed methods is demonstrated on some real life and academic problems that illustrate the efficient convergence behavior. It is shown that the newly developed schemes are able to compete with other methods in terms of numerical error, convergence and computational time. Stability is also demonstrated by means of a pictorial tool, namely, basins of attraction that have the fractal-like shapes along the borders through which basins are symmetric.



Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 672 ◽  
Author(s):  
Saima Akram ◽  
Fiza Zafar ◽  
Nusrat Yasmin

In this paper, we introduce a new family of efficient and optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity ( m ≥ 1 ) . We use the weight function approach involving one and two parameters to develop the new family. A comprehensive convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results formulated in this paper and illustrates that the suggested family is efficient among the domain of multiple root finding methods.



2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Saima Akram ◽  
Faiza Akram ◽  
Moin-ud-Din Junjua ◽  
Misbah Arshad ◽  
Tariq Afzal

In this manuscript, we present a new general family of optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity using weight functions. An extensive convergence analysis is presented to verify the optimal eighth order convergence of the new family. Some special cases of the family are also presented which require only three functions and one derivative evaluation at each iteration to reach optimal eighth order convergence. A variety of numerical test functions along with some real-world problems such as beam designing model and Van der Waals’ equation of state are presented to ensure that the newly developed family efficiently competes with the other existing methods. The dynamical analysis of the proposed methods is also presented to validate the theoretical results by using graphical tools, termed as the basins of attraction.



Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 239 ◽  
Author(s):  
Ramandeep Behl ◽  
M. Salimi ◽  
M. Ferrara ◽  
S. Sharifi ◽  
Samaher Alharbi

In this study, we present a new higher-order scheme without memory for simple zeros which has two major advantages. The first one is that each member of our scheme is derivative free and the second one is that the present scheme is capable of producing many new optimal family of eighth-order methods from every 4-order optimal derivative free scheme (available in the literature) whose first substep employs a Steffensen or a Steffensen-like method. In addition, the theoretical and computational properties of the present scheme are fully investigated along with the main theorem, which demonstrates the convergence order and asymptotic error constant. Moreover, the effectiveness of our scheme is tested on several real-life problems like Van der Waal’s, fractional transformation in a chemical reactor, chemical engineering, adiabatic flame temperature, etc. In comparison with the existing robust techniques, the iterative methods in the new family perform better in the considered test examples. The study of dynamics on the proposed iterative methods also confirms this fact via basins of attraction applied to a number of test functions.



Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 837
Author(s):  
R. A. Alharbey ◽  
Munish Kansal ◽  
Ramandeep Behl ◽  
J. A. Tenreiro Machado

This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the existing techniques are special cases of the new scheme. The algorithms are tested in several real-life problems to check their accuracy and applicability. The results of the dynamical study confirm that the new methods are more stable and accurate than the existing schemes.



2013 ◽  
Vol 18 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Baoqing Liu ◽  
Xiaojian Zhou

Recently, some optimal fourth-order iterative methods for multiple roots of nonlinear equations are presented when the multiplicity m of the root is known. Different from these optimal iterative methods known already, this paper presents a new family of iterative methods using the modified Newton’s method as its first step. The new family, requiring one evaluation of the function and two evaluations of its first derivative, is of optimal order. Numerical examples are given to suggest that the new family can be competitive with other fourth-order methods and the modified Newton’s method for multiple roots.



Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 339
Author(s):  
Ramandeep Behl ◽  
Eulalia Martínez ◽  
Fabricio Cevallos ◽  
Diego Alarcón

The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev–Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for α = 2 , which corresponds to an optimal method in the sense of Kung and Traub’s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.



2019 ◽  
Vol 24 (3) ◽  
pp. 422-444 ◽  
Author(s):  
Ramandeep Behl ◽  
Vinay Kanwar ◽  
Young Ik Kim

In this paper, we present many new one-parameter families of classical Rall’s method (modified Newton’s method), Schröder’s method, Halley’s method and super-Halley method for the first time which will converge even though the guess is far away from the desired root or the derivative is small in the vicinity of the root and have the same error equations as those of their original methods respectively, for multiple roots. Further, we also propose an optimal family of iterative methods of fourth-order convergence and converging to a required root in a stable manner without divergence, oscillation or jumping problems. All the methods considered here are found to be more effective than the similar robust methods available in the literature. In their dynamical study, it has been observed that the proposed methods have equal or better stability and robustness as compared to the other methods.



Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.



Sign in / Sign up

Export Citation Format

Share Document