scholarly journals Attention Modulated Multiple Object Tracking with Motion Enhancement and Dual Correlation

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266 ◽  
Author(s):  
Yifeng Wang ◽  
Zhijiang Zhang ◽  
Ning Zhang ◽  
Dan Zeng

The one-shot multiple object tracking (MOT) framework has drawn more and more attention in the MOT research community due to its advantage in inference speed. However, the tracking accuracy of current one-shot approaches could lead to an inferior performance compared with their two-stage counterparts. The reasons are two-fold: one is that motion information is often neglected due to the single-image input. The other is that detection and re-identification (ReID) are two different tasks with different focuses. Joining detection and re-identification at the training stage could lead to a suboptimal performance. To alleviate the above limitations, we propose a one-shot network named Motion and Correlation-Multiple Object Tracking (MAC-MOT). MAC-MOT introduces a motion enhance attention module (MEA) and a dual correlation attention module (DCA). MEA performs differences on adjacent feature maps which enhances the motion-related features while suppressing irrelevant information. The DCA module focuses on decoupling the detection task and re-identification task to strike a balance and reduce the competition between these two tasks. Moreover, symmetry is a core design idea in our proposed framework which is reflected in Siamese-based deep learning backbone networks, the input of dual stream images, as well as a dual correlation attention module. Our proposed approach is evaluated on the popular multiple object tracking benchmarks MOT16 and MOT17. We demonstrate that the proposed MAC-MOT can achieve a better performance than the baseline state of the arts (SOTAs).

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhenghao Xi ◽  
Heping Liu ◽  
Huaping Liu ◽  
Bin Yang

To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.


Author(s):  
Madison Harasyn ◽  
Wayne S. Chan ◽  
Emma L. Ausen ◽  
David G. Barber

Aerial imagery surveys are commonly used in marine mammal research to determine population size, distribution and habitat use. Analysis of aerial photos involves hours of manually identifying individuals present in each image and converting raw counts into useable biological statistics. Our research proposes the use of deep learning algorithms to increase the efficiency of the marine mammal research workflow. To test the feasibility of this proposal, the existing YOLOv4 convolutional neural network model was trained to detect belugas, kayaks and motorized boats in oblique drone imagery, collected from a stationary tethered system. Automated computer-based object detection achieved the following precision and recall, respectively, for each class: beluga = 74%/72%; boat = 97%/99%; and kayak = 96%/96%. We then tested the performance of computer vision tracking of belugas and manned watercraft in drone videos using the DeepSORT tracking algorithm, which achieved a multiple-object tracking accuracy (MOTA) ranging from 37% – 88% and multiple object tracking precision (MOTP) between 63% – 86%. Results from this research indicate that deep learning technology can detect and track features more consistently than human annotators, allowing for larger datasets to be processed within a fraction of the time while avoiding discrepancies introduced by labeling fatigue or multiple human annotators.


2018 ◽  
Vol 12 (02) ◽  
pp. 261-285 ◽  
Author(s):  
Gurinderbeer Singh ◽  
Sreeraman Rajan ◽  
Shikharesh Majumdar

A massive amount of video data is recorded daily for forensic post analysis and computer vision applications. The analyses of this data often require multiple object tracking (MOT). Advancements in image analysis algorithms and global optimization techniques have improved the accuracy of MOT, often at the cost of slow processing speed which limits its applications only to small video datasets. With the focus on speed, a fast-iterative data association technique (FIDA) for MOT that uses a tracking-by-detection paradigm and finds a locally optimal solution with a low computational overhead is introduced. The performance analyses conducted on a set of benchmark video datasets show that the proposed technique is significantly faster (50–600 times) than the existing state-of-the-art techniques that produce a comparable tracking accuracy.


Author(s):  
K. Botterill ◽  
R. Allen ◽  
P. McGeorge

The Multiple-Object Tracking paradigm has most commonly been utilized to investigate how subsets of targets can be tracked from among a set of identical objects. Recently, this research has been extended to examine the function of featural information when tracking is of objects that can be individuated. We report on a study whose findings suggest that, while participants can only hold featural information for roughly two targets this task does not affect tracking performance detrimentally and points to a discontinuity between the cognitive processes that subserve spatial location and featural information.


2010 ◽  
Author(s):  
Todd S. Horowitz ◽  
Michael A. Cohen ◽  
Yair Pinto ◽  
Piers D. L. Howe

Sign in / Sign up

Export Citation Format

Share Document