scholarly journals Performance Analysis of Wireless Local Area Network for a High-/Low-Priority Traffic Ratio at Different Numbers of Access Categories

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 693
Author(s):  
Kvitoslava Obelovska ◽  
Olga Panova ◽  
Vincent Karovič

The performance of Wireless Local Area Network (WLAN) is highly dependent on the processes that are implemented in the Medium Access Control (MAC) sublayer regulated by the IEEE 802.11 standard. In turn, various parameters affect the performance of the MAC sublayer, the most important of which is the number of stations in the network and the offered load. With the massive growth of multimedia traffic, research of the network performance depending on traffic types is relevant. In this paper, we present the impact of a high-/low-priority traffic ratio on WLAN performance with different numbers of access categories. The simulation results show different impact of high-/low-priority traffic ratio on the performance of the MAC sublayer of wireless LANs depending on different network-sizes and on network conditions. Performance of the large network with two access categories and with the prevalent high-priority traffic is significantly higher than in the case of using four categories on the MAC sublayer. This allows us to conclude that the performance improvement of the large network with the prevalent high-priority traffic can be achieved by an adaptive adjustment of the access categories number on the MAC sublayer.

2021 ◽  
Author(s):  
Hamza Ben Hamadi ◽  
said ghnimi ◽  
Lassaad Latrach ◽  
Philippe Benech ◽  
Ali Gharsallah

Abstract This paper presents the design, simulation and fabrication of a miniaturized wearable dual-band antenna on a semi-flex substrate; she is operable at 2.45/5.8 GHz for wireless local area network applications. The electrical and radiation characteristics of this proposed antenna were obtained by means of a technical of insertion of a slot to tune the operating frequencies. To study the impact of the electromagnetic radiation of the structure of the human body, it is necessary to minimize the back radiation towards the user. Therefore, in this work, a multi-band artificial magnetic conductor (AMC) was placed directly above a dual-band planar inverted F antenna to achieve a miniaturization with excellent radiation performance. The simulation results were designed and simulated using Studio commercial software (CST). A good agreement was achieved between the results of simulation and the experimental. The Comparison of measurement results indicates that the gain improved from 1,84 dB to 3,8 dB, in the lower band, and from 2,4 dB to 4,1 in the upper band, when the antenna is backed by the AMC plane. The front-to-back ratio of the AMC backed PIFA antenna was also enhanced. Then, to ensure that the proposed AMC is harmless to the human body, this prototype was placed on three-layer human tissue cubic model. It was observed that the through inclusion of plane AMC, the peak specific absorption rate (SAR) decreased to 1,45 and 1,1 W/kg at 2,45 and 5.8 GHz, respectively (a reduction of around 3,7 W/kg, compared with an antenna without (AMC).


Author(s):  
Mohammed Ghadhban Al-Hamiri ◽  
Haider J. Abd ◽  
Hanaa M. Al Abboodi

<p><span>Wireless local area networks (WLAN) has been used recently due to their benefits which exhibits outstanding mobility with easier and faster configurations. The wireless local area network performance is much influenced by both network topology and hardware specifications and thus will impact the quality of service (QoS) parameters which are delay, load, and response time. This works estimated the performance of WLAN in enterprise WAN based on the OPNET modeler. Three scenarios have been suggested which are FDDI scenario, FDDI Hybrid Star scenario, and FDDI hybrid ring scenario involving web browsing (HTTP) and file transfer protocol (FTP). Hardware objects and software configurations kept the same for all proposed scenarios. Different types of links and topologies have been applied among WLAN subnets as well as the involved gateway has been changed to measure parameters of quality of services (QoS) for all scenarios used. The findings confirmed that the FDDI Hybrid Ring scenario presents better performance than the FDDI Hybrid Star Scenario and FDDI scenario in terms of WLAN delay, WLAN load, FTP download response time, and HTTP object response time.</span></p>


Author(s):  
Lei-da Chen

In recent years, the concept of nomadic computing has received considerable attention from the business community. As an early form of nomadic information environment (NIE), wireless local area network (WLAN) has gained tremendous popularity with organizations. Using mostly anecdotal evidences, WLAN equipment manufacturers and practitioners claimed that WLAN brought dramatic improvements in the forms of productivity gains and attainment of convenience, flexibility, mobility, and time saving to organizations and their employees. However, very little academic research has been conducted to verify these claims and further our understanding of this new phenomenon. By surveying end users and managers, this study investigates the impact of WLAN on users and their work. Finally, recommendations to researchers, managers, WLAN technology providers, and equipment manufacturers also are provided.


Author(s):  
Khalid Ali Khan ◽  
Suleyman Malikmyradovich Nokerov

This study aims to optimize a fan-stub slot patch to get better suitability and performance for Citizens Broadband Radio Service (CBRS). The transition from the tedious configuration of slotted patch antenna in fan-stub shape is evaluated. Also, the impact of stub width W, stub length L, and its orientation are tested. Multiple simulation tests ensure the uniqueness in the type of slots or stubs that affect the multiband nature of patch. The optimization of basic fan-stub structure on return loss S11, Voltage Standing Wave Ratio (VSWR), and the operating band at the desired frequency is performed to accommodate the federal and non-federal use of the band. The simulation results show that the designed antenna is technically suitable to cover 4G LTE in CBRS (LTE-43 and LTE-48 band) as well as 5.5 GHz Wireless Local Area Network (WLAN) band of operation.


Sign in / Sign up

Export Citation Format

Share Document