broadband radio
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 42)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 25 (3) ◽  
pp. 23-27
Author(s):  
Junfeng Junfeng Guan ◽  
Jitian Zhang ◽  
Ruochen Lu ◽  
Hyungjoo Seo ◽  
Jin Zhou ◽  
...  

The ever-increasing demand for wireless applications has resulted in an unprecedented radio frequency (RF) spectrum shortage. Ironically, at the same time, actual utilization of the spectrum is sparse in practice [1]. To exploit previously underutilized frequency bands to accommodate new unlicensed applications and achieve highly efficient usage of the spectrum, the Federal Communications Committee (FCC) has repurposed many frequency bands for dynamic spectrum sharing. This includes the 6 GHz band to be shared between Wi-Fi 6 and the incumbent users [2] as well as the 3.5 GHz Citizens Broadband Radio Service (CBRS) band [3].


2021 ◽  
Vol 920 (1) ◽  
pp. 58
Author(s):  
Devojyoti Kansabanik ◽  
Bhaswati Bhattacharyya ◽  
Jayanta Roy ◽  
Benjamin Stappers

Author(s):  
C H Agar ◽  
P Weltevrede ◽  
L Bondonneau ◽  
J-M Grießmeier ◽  
J W T Hessels ◽  
...  

Abstract We present radio observations of the most slowly rotating known radio pulsar PSR J0250+5854. With a 23.5 s period, it is close, or even beyond, the P-$\dot{P}$ diagram region thought to be occupied by active pulsars. The simultaneous observations with FAST, the Chilbolton and Effelsberg LOFAR international stations, and NenuFAR represent a five-fold increase in the spectral coverage of this object, with the detections at 1250 MHz (FAST) and 57 MHz (NenuFAR) being the highest- and lowest-frequency published respectively to date. We measure a flux density of 4 ± 2 μJy at 1250 MHz and an exceptionally steep spectral index of $-3.5^{+0.2}_{-1.5}$, with a turnover below ∼95 MHz. In conjunction with observations of this pulsar with the GBT and the LOFAR Core, we show that the intrinsic profile width increases drastically towards higher frequencies, contrary to the predictions of conventional radius-to-frequency mapping. We examine polarimetric data from FAST and the LOFAR Core and conclude that its polar cap radio emission is produced at an absolute height of several hundreds of kilometres around 1.5 GHz, similar to other rotation-powered pulsars across the population. Its beam is significantly underfilled at lower frequencies, or it narrows because of the disappearance of conal outriders. Finally, the results for PSR J0250+5854 and other slowly spinning rotation-powered pulsars are contrasted with the radio-detected magnetars. We conclude that magnetars have intrinsically wider radio beams than the slow rotation-powered pulsars, and that consequently the latter’s lower beaming fraction is what makes objects such as PSR J0250+5854 so scarce.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 70-78
Author(s):  
I. A. Dubovik ◽  
P. V. Boykachev

The aim of this work is to develop a method for the synthesis of matching devices for broadband radio engineering systems with varying impedance in different operating conditions. To achieve this goal, a criterion (complex criterion) is proposed for minimizing the value of the modulus of the sensitivity invariant of the reflection coefficient function to a change in the load impedance with restrictions on the square of the deviation of the power transmission ratio from a given level. It is proposed to use a combination of methods of real frequencies together with the shown complex criterion, which made it possible to implement an effective approach to the synthesis of matching devices for broadband radio engineering systems with an unstable load impedance. To verify the approach, a matching device was synthesized, which made it possible to reduce the loss of the power transmission factor level transmitted to the UHF/VHF antenna of the AD-44 / CW-TA-30-512 range when it is located in various operating conditions by at least 50 % in relation to losses obtained with a standard matching device.


Systems ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 46
Author(s):  
Hicham Oualla ◽  
Rachid Fateh ◽  
Anouar Darif ◽  
Said Safi ◽  
Mathieu Pouliquen ◽  
...  

In this paper, we discuss the problem of channel identification by using eight algorithms. The first three algorithms are based on higher-order cumulants, the next three algorithms are based on binary output measurement, and the last two algorithms are based on reproducing kernels. The principal objective of this paper is to study the performance of the presented algorithms in different situations, such as with different sizes of the data input or different signal-to-noise ratios. The presented algorithms are applied to the estimation of the channel parameters of the broadband radio access network (BRAN). The simulation results confirm that the presented algorithms are able to estimate the channel parameters with different accuracies, and each algorithm has its advantages and disadvantages for a given situation, such as for a given SNR and data input. Finally, this study provides an idea of which algorithms can be selected in a given situation. The study presented in this paper demonstrates that the cumulant-based algorithms are more adequate if the data inputs are not available (blind identification), but the kernel- and binary-measurement-based methods are more adequate if the noise is not important (SNR≥16 dB).


2021 ◽  
Author(s):  
FEIFEI YIN ◽  
Zikai Yin ◽  
Xie Xiangzhi ◽  
Yitang Dai ◽  
Kun Xu

Author(s):  
Khalid Ali Khan ◽  
Suleyman Malikmyradovich Nokerov

This study aims to optimize a fan-stub slot patch to get better suitability and performance for Citizens Broadband Radio Service (CBRS). The transition from the tedious configuration of slotted patch antenna in fan-stub shape is evaluated. Also, the impact of stub width W, stub length L, and its orientation are tested. Multiple simulation tests ensure the uniqueness in the type of slots or stubs that affect the multiband nature of patch. The optimization of basic fan-stub structure on return loss S11, Voltage Standing Wave Ratio (VSWR), and the operating band at the desired frequency is performed to accommodate the federal and non-federal use of the band. The simulation results show that the designed antenna is technically suitable to cover 4G LTE in CBRS (LTE-43 and LTE-48 band) as well as 5.5 GHz Wireless Local Area Network (WLAN) band of operation.


Sign in / Sign up

Export Citation Format

Share Document