wireless local area network
Recently Published Documents


TOTAL DOCUMENTS

771
(FIVE YEARS 221)

H-INDEX

20
(FIVE YEARS 6)

Author(s):  
Chanintorn Jittawiriyanukoon ◽  
Vilasinee Srisarkun

The IEEE 802.11ay wireless communication standard consents gadgets to link in the spectrum of millimeter wave (mm-Wave) 60 Giga Hertz band through 100 Gbps bandwidth. The development of promising high bandwidth in communication networks is a must as QoS, throughput and error rates of bandwidth-intensive applications like merged reality (MR), artificial intelligence (AI) related apps or wireless communication boggling exceed the extent of the chronic 802.11 standard established in 2012. Thus, the IEEE 802.11ay task group committee has newly amended recent physical (PHY) and medium access control (MAC) blueprints to guarantee a technical achievement especially in link delay on multipath fading channels (MPFC). However, due to the congestion of super bandwidth intensive apps such as IoT and big data, we propose to diversify a propagation delay to practical extension. This article then focuses on a real-world situation and how the IEEE 802.11ay design is affected by the performance of mm-Wave propagation. In specific, we randomize the unstable MPFC link capacity by taking the divergence of congested network parameters into account. The efficiency of congested MPFC-based wireless network is simulated and confirmed by advancements described in the standard.


Author(s):  
Taiwo Samuel Aina

Abstract: The performance of a microstrip patch antenna for a practical wireless local area network application is investigated in this research. This design is built around the transmission line concept. The antenna design substrate is FR4 (lossy) with a dielectric constant (Er) of 4.3 dielectric material, and the ground and patch materials are copper (annealed). The substrate is 71.62mm in width and 55.47mm in length. The height of the dielectric material is 1.6mm, which is the normal size for FR4 material. The conducting patch element has a width of 35.81mm and a length of 27.73mm for a resonance frequency of 2.573 GHz. A simulation with CST studio suite was used to optimise the antenna design. Keywords: Microstrio patch antenna, CST suite, WLAN application, Transmission line, Antenna design


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 655
Author(s):  
Andrzej Stateczny ◽  
Krzysztof Gierlowski ◽  
Michal Hoeft

As the number of research activities and practical deployments of unmanned vehicles has shown a rapid growth, topics related to their communication with operator and external infrastructure became of high importance. As a result a trend of employing IP communication for this purpose is emerging and can be expected to bring significant advantages. However, its employment can be expected to be most effective using broadband communication technologies such as Wireless Local Area Networks (WLANs). To verify the effectiveness of such an approach in a specific case of surface unmanned vehicles, the paper includes an overview of IP-based MAVLink communication advantages and requirements, followed by a laboratory and field-experiment study of selected WLAN technologies, compared to popular narrowband communication solutions. The conclusions confirm the general applicability of IP/WLAN communication for surface unmanned vehicles, providing an overview of their advantages and pointing out deployment requirements.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Manish Sharma ◽  
Prem Chand Vashist ◽  
Ibrahim Alsukayti ◽  
Nitin Goyal ◽  
Divya Anand ◽  
...  

This research article reports a compact fractal 4 × 4 UWB extended bandwidth MIMO antenna with physical dimensions of 44 × 44 mm2 for high-speed wireless applications. The reported antenna comprises four fractal radiating elements that are symmetrical and placed orthogonal to each other with a respective rectangular ground printed on the opposite plane. A higher isolation is achieved between the radiating elements by the placement of a fractal patch orthogonally and no separate decoupling structure is required. The antenna offers a −10 dB transmission capacity of 2.84–15.88 GHz. The fractal radiating element, which is embedded by an inverted T-type stub placed within a rectangular slot and an etched rotated C-type slot, provides band-stop filters for WiMAX (Worldwide inter-operability for Microwave Access) and WLAN (wireless local area network)-interfering bands. The key parameters of diversity performance are compared by simulation and measurement (fabricated prototype) of ECC (envelope correlation coefficient), DG (directive gain), TARC (total active reflection coefficient) and CCL (channel capacity loss). The antenna offers an omnidirectional radiation pattern with an average gain of 3.52 dBi.


Author(s):  
Param Dev ◽  
Surendra Kumar Gupta ◽  
Amit Bage ◽  
Lakhindar Murmu

This paper presents a compact multiple-inputs multiple-outputs (MIMO) antenna for wireless local area network (WLAN) applications. The proposed four-port MIMO antenna has been incorporated with its four identical elements having dimensions of 10[Formula: see text]mm [Formula: see text] 12[Formula: see text]mm each. The MIMO antenna is designed to operate in the range of 5.17–6.25[Formula: see text]GHz frequency band having impedance bandwidth of 18.91%. The antenna is fabricated on a glass epoxy FR-4 substrate having a thickness of 0.8[Formula: see text]mm for measurement and validation. The measured results show that the antenna has good isolation greater than [Formula: see text]17[Formula: see text]dB to [Formula: see text]25[Formula: see text]dB, better impedance matching and envelope correlation coefficient (ECC) below 0.03 over the entire band of operation. The proposed MIMO antenna is a potential candidate for WLAN applications.


Author(s):  
Sotyohadi Sotyohadi ◽  
I Komang Somawirata ◽  
Kartiko Ardi Widodo ◽  
Son Thanh Phung ◽  
Ivar Zekker

This paper presents a linear 1 × 2 “Ha ( )”–slot patch array microstrip antenna. The proposed design of an array microstrip antenna is intended for Wireless Local Area Network (WLAN) 2.4 GHz devices. From the previous research concerning the single patch “Ha ( )”–slot microstrip antenna, the gain that can be achieved is 5.77 dBi in simulation. This value is considered too small for an antenna to accommodate WLAN devices if compare to a Hertzian antenna. To enhance the gain of microstrip antenna, some methods can be considered using linear 1 × 2 patch array and T-Junction power divider circuit to have matching antenna impedance. The distances between two patches are one of the important steps to be considered in designing the patch array microstrip antenna. Thus, the minimum distance between the patch elements are calculated should be greater than λ/2 of the resonance frequency antenna. If the distance less than λ/2 electromagnetically coupled will occur, vice versa when it is to widen the dimension of the antenna will less efficient. Epoxy substrate Flame Resistant 4 (FR4) with dielectric constant 4.3 is used as the platform designed for the array antenna and it is analyzed using simulation software Computational Simulation Technology (CST) studio suite by which return loss, Voltage Standing Wave Ratio (VSWR), and gain are calculated. The simulation result showed that the designed antenna achieve return loss (S11) -25.363 dB with VSWR 1.1 at the frequency 2.4 GHz, and the gain obtained from simulation is 8.96 dBi, which is greater than 64.4 % if compared to the previous one. The proposed antenna design shows that increasing the number of patches in the array can technically improve the gain of a microstrip antenna, which can cover a wider area if applied to WLAN devices


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7838
Author(s):  
Sunanda Roy ◽  
Jun Jiat Tiang ◽  
Mardeni Bin Roslee ◽  
Md Tanvir Ahmed ◽  
Abbas Z. Kouzani ◽  
...  

RF power is broadly available in both urban and semi-urban areas and thus exhibits as a promising candidate for ambient energy scavenging sources. In this research, a high-efficiency quad-band rectenna is designed for ambient RF wireless energy scavenging over the frequency range from 0.8 to 2.5 GHz. Firstly, the detailed characteristics (i.e., available frequency bands and associated power density levels) of the ambient RF power are studied and analyzed. The data (i.e., RF survey results) are then applied to aid the design of a new quad-band RF harvester. A newly designed impedance matching network (IMN) with an additional L-network in a third-branch of dual-port rectifier circuit is familiarized to increase the performance and RF-to-DC conversion efficiency of the harvester with comparatively very low input RF power density levels. A dual-polarized multi-frequency bow-tie antenna is designed, which has a wide bandwidth (BW) and is miniature in size. The dual cross planer structure internal triangular shape and co-axial feeding are used to decrease the size and enhance the antenna performance. Consequently, the suggested RF harvester is designed to cover all available frequency bands, including part of most mobile phone and wireless local area network (WLAN) bands in Malaysia, while the optimum resistance value for maximum dc rectification efficiency (up to 48%) is from 1 to 10 kΩ. The measurement result in the ambient environment (i.e., both indoor and outdoor) depicts that the new harvester is able to harvest dc voltage of 124.3 and 191.0 mV, respectively, which can be used for low power sensors and wireless applications.


Author(s):  
Rashmi SK ◽  
Swathi RN ◽  
Vaishnavi AS ◽  
Nekkanti Deepak

The Internet was initially used to transfer data packets between users and data sources with a specific IP address. Due to advancements, the Internet is being used to share data among different small, resource constrained devices connected in billions to constitute the (IOT) Internet of things .In addition, the paper discusses about wireless LAN Wi-Fi technology i.e. wireless local area network protocol and on a larger scale, mobile communication technology, that is used to provide connectivity to the internet, the wide area network. The paper draws an attention towards the background of IOT and its distinction with other technologies, discussion on network optimization in IOT. This paper not only reviews, compares and consolidates the recent related works, but also admires the author’s findings, solutions and discusses its usefulness towards network optimization in IOT. The uniqueness of this paper lies in the review of network optimization issues and challenges in IOT. In this paper, a comprehensive survey on the network optimization in IOT is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jeremiah O. Abolade ◽  
Dominic B. O. Konditi

A compact dual-band ram horn-like folded antenna is presented in this work. The antenna is based on a ram horn-like folded strip, asymmetric microstrip feeding (AMF) technique, partial ground, and protruding stub at the ground plane. The dimension of the proposed antenna is 0.11 λ g  × 0.17 λ g at 2.3 GHz (10 × 15 mm2). The proposed shape is achieved through the combination of two circular arcs with different radii. The antenna operates at 2.3 GHz and 5.8 GHz with a measured bandwidth of 100 MHz and 820 MHz, a gain of 0.62 dBi and 2.2 dBi, and radiation efficiency of 93.67% and 99.87%, respectively. The prototype of the proposed antenna is fabricated and measured. The measured result shows a good agreement with the simulated result. The parametric study of the proposed antenna is performed and results are presented. Besides, a comparative study between the antennas proposed in this work and the state of the art is performed and presented. The proposed antenna is comparatively small in size than all the recently reported works in the literature while ensuring good radiation characteristics. Therefore, the antenna proposed in this work is a better candidate for future portable sub-6GHz fifth-generation (5G), Advance Long-term Evolution (LTE-A), Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN) applications.


Author(s):  
K. M. K. Daray ◽  
P. A. G. Todoc ◽  
C. J. S. Sarmiento

Abstract. The indoor positioning problem is not the unavailability of indoor positioning technology, but the difficulty of arriving at an acceptable compromise of technical constraints like cost, performance, ease of use, and availability of technologies. In a developing country such as the Philippines, these constraints have more weight and can restrict the advancement of indoor positioning.This study investigates the use of Bluetooth Low Energy (BLE) and Wireless Local Area Network (WLAN) in Euclidean distance computation, which implies prospect use for indoor positioning through trilateration. It is a proof-of-concept study that BLE and WLAN, using readily-available services such as Nearby Application Programming Interface (API) and beacon simulators, can be used for indoor positioning. This method offers a better trade-off between cost, power, and accuracy.Nearby API and a regular beacon simulator application were used as beacons. The received signal strength interface (RSSI) was measured and used to calculate the Euclidean distance. From each beacon were calculated four different distances, Nearby yielding a maximum error of 26% and a minimum of 4%. The beacon simulator was less accurate and had a maximum error of 60.5% and a minimum of 4%. This shows that it is possible to calculate Euclidean distance using WLAN and BLE, and that Nearby API, which uses both, was more accurate than the beacon simulator, which used only BLE.


Sign in / Sign up

Export Citation Format

Share Document