scholarly journals Initial Value Problems of Linear Equations with the Dzhrbashyan–Nersesyan Derivative in Banach Spaces

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1058
Author(s):  
Vladimir E. Fedorov ◽  
Marina V. Plekhanova ◽  
Elizaveta M. Izhberdeeva

Among the many different definitions of the fractional derivative, the Riemann–Liouville and Gerasimov–Caputo derivatives are most commonly used. In this paper, we consider the equations with the Dzhrbashyan–Nersesyan fractional derivative, which generalizes the Riemann–Liouville and the Gerasimov–Caputo derivatives; it is transformed into such derivatives for two sets of parameters that are, in a certain sense, symmetric. The issues of the unique solvability of initial value problems for some classes of linear inhomogeneous equations of general form with the fractional Dzhrbashyan–Nersesyan derivative in Banach spaces are investigated. An inhomogeneous equation containing a bounded operator at the fractional derivative is considered, and the solution is presented using the Mittag–Leffler functions. The result obtained made it possible to study the initial value problems for a linear inhomogeneous equation with a degenerate operator at the fractional Dzhrbashyan–Nersesyan derivative in the case of relative p-boundedness of the operator pair from the equation. Abstract results were used to study a class of initial boundary value problems for equations with the time-fractional Dzhrbashyan–Nersesyan derivative and with polynomials in a self-adjoint elliptic differential operator with respect to spatial variables.

1987 ◽  
Vol 106 (1-2) ◽  
pp. 121-129 ◽  
Author(s):  
Norio Yoshida

SynopsisWe consider the hyperbolic equation uxy + c(x, y, u) =f(x, y) and the wave equationWe show that, under suitable conditions, there are bounded domains in which every solution to certain problems has a zero. Characteristic initial value problems and initial boundary value problems are considered.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


Author(s):  
Mykola Krasnoshchok

In the last few years, the concepts of fractional calculus were frequently applied to other disciplines. Recently, this subject has been extended in various directions such as signal processing, applied mathematics, bio-engineering, viscoelasticity, fluid mechanics, and fluid dynamics. In fluid dynamics, the fractional derivative models were used widely in the past for the study of viscoelastic materials such as polymers in the glass transition and in the glassy state. Recently, it has increasingly been seen as an efficient tool through which a useful generalization of physical concepts can be obtained. The fractional derivatives used most are the Riemann--Liouville fractional derivative and the Caputo fractional derivative. It is well known that these operators exhibit difficulties in applications. For example, the Riemann--Liouville derivative of a constant is not zero. We deal with so called temporal fractional derivative as a prototype of general fractional derivative. We prove the global strong solvability of a linear and quasilinear initial-boundary value problems with a singular complete monotone kernels. Our main tool is a theory of evolutionary integral equations. An abstract fractional order differential equation is studied, which contains as particular case the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. This paper concerns with an initial-boundary value problem for the Navier--Stokes--Voigt equations describing unsteady flows of an incompressible viscoelastic fluid. We give the strong formulation of this problem as a nonlinear evolutionary equation in Sobolev spaces. Using the Galerkin method with a special basis of eigenfunctions of the Stokes operator, we construct a global-in-time strong solution in two-dimensional domain. We also establish an $L_2$ decay estimate for the velocity field under the assumption that the external forces field is conservative.


2013 ◽  
Vol 631-632 ◽  
pp. 957-961
Author(s):  
Jian She Peng ◽  
Gang Xie ◽  
Liu Yang ◽  
Yu Quan Yuan

This paper presents a new time-domain DQ (differential quadrature) method for structural vibration analysis. It adopts differential quadrature method both in space domain and in time domain on the basis of governing partial differential equation and initial-boundary value condition of vibration problems of structures, and gets new differential quadrature linear equations with complete initial-boundary value conditions for solving all parameters of the displacement-field. The examples in this paper show the time-domain differential quadrature method is a useful and efficient tool for structural vibration analysis.


2001 ◽  
Vol 32 (4) ◽  
pp. 315-325
Author(s):  
M. Benchohra ◽  
S. K. Ntouyas

In this paper we investigate the existence of solutions on a compact interval to second order initial value problems for functional differential and integrodifferential inclusions in Banach spaces. We shall make use of a fixed point theorem for condensing maps due to Martelli.


Sign in / Sign up

Export Citation Format

Share Document