scholarly journals A Novel Underdetermined Blind Source Separation Method Based on OPTICS and Subspace Projection

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1677
Author(s):  
Qingyi Wang ◽  
Yiqiong Zhang ◽  
Shuai Yin ◽  
Yuduo Wang ◽  
Genping Wu

In recent years, the problem of underdetermined blind source separation (UBSS) has become a research hotspot due to its practical potential. This paper presents a novel method to solve the problem of UBSS, which mainly includes the following three steps: Single source points (SSPs) are first screened out using the principal component analysis (PCA) approach, which is based on the statistical features of signal time-frequency (TF) points. Second, a mixing matrix estimation method is proposed that combines Ordering Points To Identify the Clustering Structure (OPTICS) with an improved potential function to directly detect the number of source signals, remove noise points, and accurately calculate the mixing matrix vector; it is independent of the input parameters and offers great accuracy and robustness. Finally, an improved subspace projection method is used for source signal recovery, and the upper limit for the number of active sources at each mixed signal is increased from m−1 to m. The unmixing process of the proposed algorithm is symmetrical to the actual signal mixing process, allowing it to accurately estimate the mixing matrix and perform well in noisy environments. When compared to previous methods, the source signal recovery accuracy is improved. The method’s effectiveness is demonstrated by both theoretical and experimental results.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1413 ◽  
Author(s):  
Jiantao Lu ◽  
Wei Cheng ◽  
Yanyang Zi

To identify the major vibration and radiation noise, a source contribution quantitative estimation method is proposed based on underdetermined blind source separation. First, the single source points (SSPs) are identified by directly searching the identical normalized time-frequency vectors of mixed signals, which can improve the efficiency and accuracy in identifying SSPs. Then, the mixing matrix is obtained by hierarchical clustering, and source signals can also be recovered by the least square method. Second, the optimal combination coefficients between source signals and mixed signals can be calculated based on minimum redundant error energy. Therefore, mixed signals can be optimally linearly combined by source signals via the coefficients. Third, the energy elimination method is used to quantitatively estimate source contributions. Finally, the effectiveness of the proposed method is verified via numerical case studies and experiments with a cylindrical structure, and the results show that source signals can be effectively recovered, and source contributions can be quantitatively estimated by the proposed method.


2012 ◽  
Vol 4 ◽  
pp. 217-221
Author(s):  
Yong Qiang Chen ◽  
Jun Liu

The accurate estimation of mixing matrix is critical for blind separation, for solving the problems of traditional methods such as bad robustness and low accuracy, a method based on statistical modal is proposed. The generalized Gaussian mixture modal is used to fit the distribution of single-source-points, a new objective function for clustering is obtained from the view of maximum likelihood estimation. Constrained particle swarm optimization is used to optimize the objective function, by which the mixing matrix is estimated. This method is applicable to determined and underdetermined blind source separation. The simulation shows that the proposed method has higher estimation accuracy and is more robust than traditional methods.


Sign in / Sign up

Export Citation Format

Share Document