scholarly journals Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses

Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 611 ◽  
Author(s):  
Nicolas Langenegger ◽  
Wolfgang Nentwig ◽  
Lucia Kuhn-Nentwig

This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.

2015 ◽  
Vol 30 (7) ◽  
pp. 1469-1489 ◽  
Author(s):  
Sergei Boulyga ◽  
Stefanie Konegger-Kappel ◽  
Stephan Richter ◽  
Laure Sangély

An important part of the International Atomic Energy Agency (IAEA) safeguards system is the “analytical laboratory”, with mass spectrometric techniques, belonging to the most powerful methods for the analysis of nuclear material and environmental samples collected during inspections.


2019 ◽  
Vol 9 (3) ◽  
pp. 161
Author(s):  
Sung-Eun Cho ◽  
Hyojin Chae ◽  
Hyung-Doo Park ◽  
Sail Chun ◽  
Yong-Wha Lee ◽  
...  

2015 ◽  
Vol 60 (6) ◽  
pp. 511-520 ◽  
Author(s):  
A.A. Efremov ◽  
◽  
V.G. Litovchenko ◽  
V.P. Melnik ◽  
O.S. Oberemok ◽  
...  

2002 ◽  
Vol 75 (3) ◽  
pp. 316 ◽  
Author(s):  
Zsolt Ablonczy ◽  
Patrice Goletz ◽  
Daniel R. Knapp ◽  
Rosalie K. Crouch

Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 390-393 ◽  
Author(s):  
Dominic M. Desiderio ◽  
Lin Yan ◽  
Genevieve Fridland ◽  
Jih-Lie Tseng

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 595
Author(s):  
Stephen Gargan ◽  
Paul Dowling ◽  
Margit Zweyer ◽  
Jens Reimann ◽  
Michael Henry ◽  
...  

Extraocular muscles (EOMs) represent a specialized type of contractile tissue with unique cellular, physiological, and biochemical properties. In Duchenne muscular dystrophy, EOMs stay functionally unaffected in the course of disease progression. Therefore, it was of interest to determine their proteomic profile in dystrophinopathy. The proteomic survey of wild type mice and the dystrophic mdx-4cv model revealed a broad spectrum of sarcomere-associated proteoforms, including components of the thick filament, thin filament, M-band and Z-disk, as well as a variety of muscle-specific markers. Interestingly, the mass spectrometric analysis revealed unusual expression levels of contractile proteins, especially isoforms of myosin heavy chain. As compared to diaphragm muscle, both proteomics and immunoblotting established isoform MyHC14 as a new potential marker in wild type EOMs, in addition to the previously identified isoforms MyHC13 and MyHC15. Comparative proteomics was employed to establish alterations in the protein expression profile between normal EOMs and dystrophin-lacking EOMs. The analysis of mdx-4cv EOMs identified elevated levels of glycolytic enzymes and molecular chaperones, as well as decreases in mitochondrial enzymes. These findings suggest a process of adaptation in dystrophin-deficient EOMs via a bioenergetic shift to more glycolytic metabolism, as well as an efficient cellular stress response in EOMs in dystrophinopathy.


Sign in / Sign up

Export Citation Format

Share Document