venom component
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 2)

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 407
Author(s):  
José Beltrán-Vidal ◽  
Edson Carcamo-Noriega ◽  
Nina Pastor ◽  
Fernando Zamudio-Zuñiga ◽  
Jimmy Alexander Guerrero-Vargas ◽  
...  

The Colombian scorpion Centruroides margaritatus produces a venom considered of low toxicity. Nevertheless, there are known cases of envenomation resulting in cardiovascular disorders, probably due to venom components that target ion channels. Among them, the humanether-à-go-go-Related gene (hERG1) potassium channels are critical for cardiac action potential repolarization and alteration in its functionality are associated with cardiac disorders. This work describes the purification and electrophysiological characterization of a Centruroides margaritatus venom component acting on hERG1 channels, the CmERG1 toxin. This novel peptide is composed of 42 amino acids with a MW of 4792.88 Da, folded by four disulfide bonds and it is classified as member number 10 of the γ-KTx1 toxin family. CmERG1 inhibits hERG1 currents with an IC50 of 3.4 ± 0.2 nM. Despite its 90.5% identity with toxin ɣ-KTx1.1, isolated from Centruroides noxius, CmERG1 completely blocks hERG1 current, suggesting a more stable plug of the hERG channel, compared to that formed by other ɣ-KTx.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 239
Author(s):  
Yijie Deng ◽  
Bo Yeon Kim ◽  
Kyeong Yong Lee ◽  
Hyung Joo Yoon ◽  
Hu Wan ◽  
...  

Bee venom is a complex mixture composed of peptides, proteins with enzymatic properties, and low-molecular-weight compounds. Although the carboxylesterase in bee venom has been identified as an allergen, the enzyme’s role as a venom component has not been previously elucidated. Here, we show the lipolytic activity of a bumblebee (Bombus ignitus) venom carboxylesterase (BivCaE). The presence of BivCaE in the venom secreted by B. ignitus worker bees was confirmed using an anti-BivCaE antibody raised against a recombinant BivCaE protein produced in baculovirus-infected insect cells. The enzymatic activity of the recombinant BivCaE protein was optimal at 40 °C and pH 8.5. Recombinant BivCaE protein degrades triglycerides and exhibits high lipolytic activity toward long-chain triglycerides, defining the role of BivCaE as a lipolytic agent. Bee venom phospholipase A2 binds to mammalian cells and induces apoptosis, whereas BivCaE does not affect mammalian cells. Collectively, our data demonstrate that BivCaE functions as a lipolytic agent in bee venom, suggesting that BivCaE will be involved in distributing the venom via degradation of blood triglycerides.


2020 ◽  
Vol 10 ◽  
Author(s):  
Ruchi Tiwari ◽  
Gaurav Tiwari ◽  
Akanksha Lahiri ◽  
Vadivelan Ramachandran ◽  
Awani Rai

Background: Apis mellifera, European honey bee venom (BV) is a complex combination of chemical compounds comprising proteins, peptides, enzymes, and other small molecules. Melittin (MEL), which is the key component of BV is considered as an alternative for treatment of various infections. MEL is an amphipathic, cell-penetrating, 26-residue, ahelical anti-hepatoma peptide derived from BV. However, owing to its initial conformational strength and poor stability, melittin is constrained in use as a medication. Objective: The study focused on collective data of therapeutic activities of Bee venom component, MEL. Method: Regardless of its broad variety of biological and possible therapeutic uses, there has been increasing concern in the use of MEL. According to literature, MEL revealed range of activities started from Anti- cancer activity, Anti- microbial activity, Anti- viral activity, Anti-inflammatory activity to Anti- diabetic activity. Present review article summarized therapeutic applications of MEL, their mechanism of action along with recent research progress in field of its delivery. Conclusion: It could be concluded that MEL exerts multiple effects on cellular functions of infected cells.


2020 ◽  
Vol 117 (44) ◽  
pp. 27481-27492
Author(s):  
Maria Y. Sachkova ◽  
Morani Landau ◽  
Joachim M. Surm ◽  
Jason Macrander ◽  
Shir A. Singer ◽  
...  

The sea anemoneNematostella vectensis(Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction inNematostellapolyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to aNematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.


2020 ◽  
Vol 37 (12) ◽  
pp. 3563-3575 ◽  
Author(s):  
Juan David Bayona-Serrano ◽  
Vincent Louis Viala ◽  
Rhett M Rautsaw ◽  
Tristan D Schramer ◽  
Gesiele A Barros-Carvalho ◽  
...  

Abstract Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an “SVMP-like” function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 363
Author(s):  
Bin Wan ◽  
Lei Yang ◽  
Jiao Zhang ◽  
Liming Qiu ◽  
Qi Fang ◽  
...  

The pupal ectoparasitoid Pachycrepoideus vindemiae injects venom into its fly hosts prior to oviposition. We have shown that this venom causes immune suppression in Drosophila melanogaster pupa but the mechanism involved remained unclear. Here, we show using transgenic D. melanogaster with fluorescent hemocytes that the in vivo number of plasmatocytes and lamellocytes decreases after envenomation while it has a limited effect on crystal cells. After in vitro incubation with venom, the cytoskeleton of plasmatocytes underwent rearrangement with actin aggregation around the internal vacuoles, which increased with incubation time and venom concentration. The venom also decreased the lamellocytes adhesion capacity and induced nucleus fragmentation. Electron microscopy observation revealed that the shape of the nucleus and mitochondria became irregular after in vivo incubation with venom and confirmed the increased vacuolization with the formation of autophagosomes-like structures. Almost all venom-treated hemocytes became positive for TUNEL assays, indicating massive induced apoptosis. In support, the caspase inhibitor Z-VAD-FMK attenuated the venom-induced morphological changes suggesting an involvement of caspases. Our data indicate that P. vindemiae venom inhibits D. melanogaster host immunity by inducing strong apoptosis in hemocytes. These assays will help identify the individual venom component(s) responsible and the precise mechanism(s)/pathway(s) involved.


Author(s):  
Maria Y. Sachkova ◽  
Morani Landau ◽  
Joachim M. Surm ◽  
Jason Macrander ◽  
Shir Singer ◽  
...  

AbstractThe sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model system for characterizing the evolution of genes functioning in venom and nervous systems. Despite being an example for evolutionary novelty, the evolutionary origin of most toxins remains unknown. Here we report the first bona fide case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Interestingly, both peptides exhibit similarities in their functional activities: both of them provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. Strikingly, ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components, and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics and functional approaches to reveal one new venom component, five neuropeptides with two different cysteine motifs and an evolutionary pathway from nervous to venom system in Cnidaria.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 195 ◽  
Author(s):  
Hyemin Gu ◽  
Sang Mi Han ◽  
Kwan-Kyu Park

Bee venom is a natural toxin produced by honeybees and plays an important role in defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin, adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%–3% dry weight of bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction pathways involved in cell development. The aim of this study was to review the current understanding of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are the pathological processes of various diseases. Apamin’s potential therapeutic and pharmacological applications are also discussed.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Kyungjae Andrew Yoon ◽  
Kyungmun Kim ◽  
Woo-Jin Kim ◽  
Woo Young Bang ◽  
Neung-Ho Ahn ◽  
...  

To identify and compare venom components and expression patterns, venom gland-specific transcriptome analyses were conducted for 14 Aculeate bees and wasps. TPM (transcripts per kilobase million) values were normalized using the average transcription level of a reference housekeeping gene (dimethyladenosine transferase). Orthologous venom component genes across the 14 bee and wasp species were identified, and their relative abundance in each species was determined by comparing normalized TPM values. Based on signal sequences in the transcripts, the genes of novel venom components were identified and characterized to encode potential allergens. Most of the allergens and pain-producing factors (arginine kinase, hyaluronidase, mastoparan, phospholipase A1, phospholipase A2, and venom allergen 5) showed extremely high expression levels in social wasps. Acid phosphatase, neprilysin, and tachykinin, which are known allergens and neurotoxic peptides, were found in the venom glands of solitary wasps more often than in social wasps. In the venom glands of bumblebees, few or no transcripts of major allergens or pain-producing factors were identified. Taken together, these results indicate that differential expression patterns of the venom genes in some Aculeate species imply that some wasps and bumblebee species have unique groups of highly expressed venom components. Some venom components reflected the Aculeate species phylogeny, but others did not. This unique evolution of specific venom components in different groups of some wasps and bumblebee species might have been shaped in response to both ecological and behavioral influences.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 611 ◽  
Author(s):  
Nicolas Langenegger ◽  
Wolfgang Nentwig ◽  
Lucia Kuhn-Nentwig

This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.


Sign in / Sign up

Export Citation Format

Share Document