scholarly journals A Fast Data Processing Technique for Continuous Gravitational Wave Searches

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 486
Author(s):  
Massimo Tinto

This article discusses the potential advantages of a data processing technique for continuous gravitational wave signals searches in the data measured by ground-based gravitational wave interferometers. Its main advantage over other techniques is that it does not need to search over the signal’s direction of propagation. Although it is a “coherent method” (i.e., it coherently processes year-long data), it is applied to a data set obtained by multiplying the original time-series with a (half-year) time-shifted copy of it. As a result, the phase modulation due to the interferometer motion around the Sun is automatically canceled in the signal of the synthesized time-series. Although the resulting signal-to-noise ratio is not as high as that of a coherent search, it equals that of current hierarchical methods. In addition, since the signal search is performed over a parameters space of smaller dimensionality, the associated false-alarm probability should be smaller than those characterizing hierarchical methods and result in an improved likelihood of detection.

Author(s):  
Massimo Tinto

This article discusses the potential advantages of a data processing technique for continuous gravitational wave signals searches in the data measured by ground-based gravitational wave interferometers. Its main advantage over other techniques is that it does not need to search over the signal’s direction of propagation. Although it is a “ coherent method” (i.e. it coherently processes year-long data), it is applied to a data set obtained by multiplying the original time-series with a (half-year) time-shifted copy of it. As a result, the phase modulation due to the interferometer motion around the Sun is automatically canceled in the signal of the synthesized time-series. Although the resulting signal-to-noise ratio is not as high as that of a coherent search, it equals that of current hierarchical methods. In addition, since the signal search is performed over a parameters space of smaller dimensionality, the associated false-alarm probability should be smaller than those characterizing hierarchical methods and result in an improved likelihood of detection.


Geophysics ◽  
1964 ◽  
Vol 29 (5) ◽  
pp. 783-805 ◽  
Author(s):  
William A. Schneider ◽  
Kenneth L. Larner ◽  
J. P. Burg ◽  
Milo M. Backus

A new data‐processing technique is presented for the separation of initially up‐traveling (ghost) energy from initially down‐traveling (primary) energy on reflection seismograms. The method combines records from two or more shot depths after prefiltering each record with a different filter. The filters are designed on a least‐mean‐square‐error criterion to extract primary reflections in the presence of ghost reflections and random noise. Filter design is dependent only on the difference in uphole time between shots, and is independent of the details of near‐surface layering. The method achieves wide‐band separation of primary and ghost energy, which results in 10–15 db greater attenuation of ghost reflections than can be achieved with conventional two‐ or three‐shot stacking (no prefiltering) for ghost elimination. The technique is illustrated in terms of both synthetic and field examples. The deghosted field data are used to study the near‐surface reflection response by computing the optimum linear filter to transform the deghosted trace back into the original ghosted trace. The impulse response of this filter embodies the effects of the near‐surface on the reflection seismogram, i.e. the cause of the ghosting. Analysis of these filters reveals that the ghosting mechanism in the field test area consists of both a surface‐ and base‐of‐weathering layer reflector.


2011 ◽  
Author(s):  
Hongwei Xie ◽  
Hongyun Li ◽  
Zeping Xu ◽  
Guzhou Song ◽  
Faqiang Zhang ◽  
...  

Geophysics ◽  
1965 ◽  
Vol 30 (5) ◽  
pp. 932-932

In the article entitled “A new data‐processing technique for multiple attenuation exploiting differential normal moveout,” by William A. Schneider, E. R. Prince, Jr., and Ben F. Giles, June, 1965, p. 348–362, page 361, equation (A‐3) should read: [Formula: see text], (A‐3) and the sentence immediately following should read: where [Formula: see text] and [Formula: see text] are the cross‐spectral…. In the last two equations on the bottom of the page, the π was dropped down from its proper place in the exponent.


Sign in / Sign up

Export Citation Format

Share Document