scholarly journals The HSV1 Tail-Anchored Membrane Protein pUL34 Contains a Basic Motif That Supports Active Transport to the Inner Nuclear Membrane Prior to Formation of the Nuclear Egress Complex

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1544
Author(s):  
Christina Funk ◽  
Débora Marques da Silveira e Santos ◽  
Melanie Ott ◽  
Verena Raschbichler ◽  
Susanne M. Bailer

Herpes simplex virus type 1 nucleocapsids are released from the host nucleus by a budding process through the nuclear envelope called nuclear egress. Two viral proteins, the integral membrane proteins pUL34 and pUL31, form the nuclear egress complex at the inner nuclear membrane, which is critical for this process. The nuclear import of both proteins ensues separately from each other: pUL31 is actively imported through the central pore channel, while pUL34 is transported along the peripheral pore membrane. With this study, we identified a functional bipartite NLS between residues 178 and 194 of pUL34. pUL34 lacking its NLS is mislocalized to the TGN but retargeted to the ER upon insertion of the authentic NLS or a mimic NLS, independent of the insertion site. If co-expressed with pUL31, either of the pUL34-NLS variants is efficiently, although not completely, targeted to the nuclear rim where co-localization with pUL31 and membrane budding seem to occur, comparable to the wild-type. The viral mutant HSV1(17+)Lox-UL34-NLS mt is modestly attenuated but viable and associated with localization of pUL34-NLS mt to both the nuclear periphery and cytoplasm. We propose that targeting of pUL34 to the INM is facilitated by, but not dependent on, the presence of an NLS, thereby supporting NEC formation and viral replication.

2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Sebastian Rönfeldt ◽  
Barbara G. Klupp ◽  
Kati Franzke ◽  
Thomas C. Mettenleiter

ABSTRACT Newly assembled herpesvirus nucleocapsids are translocated from the nucleus to the cytosol by a vesicle-mediated process engaging the nuclear membranes. This transport is governed by the conserved nuclear egress complex (NEC), consisting of the alphaherpesviral pUL34 and pUL31 homologs. The NEC is not only required for efficient nuclear egress but also sufficient for vesicle formation from the inner nuclear membrane (INM), as well as from synthetic lipid bilayers. The recently solved crystal structures for the NECs from different herpesviruses revealed molecular details of this membrane deformation and scission machinery uncovering the interfaces involved in complex and coat formation. However, the interaction domain with the nucleocapsid remained undefined. Since the NEC assembles a curved hexagonal coat on the nucleoplasmic side of the INM consisting of tightly interwoven pUL31/pUL34 heterodimers arranged in hexamers, only the membrane-distal end of the NEC formed by pUL31 residues appears to be accessible for interaction with the nucleocapsid cargo. To identify the amino acids involved in capsid incorporation, we mutated the corresponding regions in the alphaherpesvirus pseudorabies virus (PrV). Site-specifically mutated pUL31 homologs were tested for localization, interaction with pUL34, and complementation of PrV-ΔUL31. We identified a conserved lysine residue at amino acid position 242 in PrV pUL31 located in the alpha-helical domain H10 exposed on the membrane-distal end of the NEC as a key residue for nucleocapsid incorporation into the nascent primary particle. IMPORTANCE Vesicular transport through the nuclear envelope is a focus of research but is still not well understood. Herpesviruses pioneered this mechanism for translocation of the newly assembled nucleocapsid from the nucleus into the cytosol via vesicles derived from the inner nuclear membrane which fuse in a well-tuned process with the outer nuclear membrane to release their content. The structure of the viral nuclear membrane budding and scission machinery has been solved recently, providing in-depth molecular details. However, how cargo is incorporated remained unclear. We identified a conserved lysine residue in the membrane-distal portion of the nuclear egress complex required for capsid uptake into inner nuclear membrane-derived vesicles.


2007 ◽  
Vol 81 (9) ◽  
pp. 4429-4437 ◽  
Author(s):  
James B. Morris ◽  
Helmut Hofemeister ◽  
Peter O'Hare

ABSTRACT The inner nuclear membrane (INM) contains specialized membrane proteins that selectively interact with nuclear components including the lamina, chromatin, and DNA. Alterations in the organization of and interactions with INM and lamina components are likely to play important roles in herpesvirus replication and, in particular, exit from the nucleus. Emerin, a member of the LEM domain class of INM proteins, binds a number of nuclear components including lamins, the DNA-bridging protein BAF, and F-actin and is thought to be involved in maintaining nuclear integrity. Here we report that emerin is quantitatively modified during herpes simplex virus (HSV) infection. Modification begins early in infection, involves multiple steps, and is reversed by phosphatase treatment. Emerin phosphorylation during infection involves one or more cellular kinases but can also be influenced by the US3 viral kinase, a protein whose function is known to be involved in HSV nuclear egress. The results from biochemical extraction analyses and from immunofluorescence of the detergent-resistant population demonstrate that emerin association with the INM significantly reduced during infection. We propose that the induction of emerin phosphorylation in infected cells may be involved in nuclear egress and uncoupling interactions with targets such as the lamina, chromatin, or cytoskeletal components.


mBio ◽  
2021 ◽  
Author(s):  
Michael K. Thorsen ◽  
Alex Lai ◽  
Michelle W. Lee ◽  
David P. Hoogerheide ◽  
Gerard C. L. Wong ◽  
...  

Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world’s population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid.


2016 ◽  
Vol 90 (23) ◽  
pp. 10738-10751 ◽  
Author(s):  
Amber Vu ◽  
Chelsea Poyzer ◽  
Richard Roller

ABSTRACT Nuclear egress of herpesviruses is accompanied by changes in the architecture of the nuclear membrane and nuclear lamina that are thought to facilitate capsid access to the inner nuclear membrane (INM) and curvature of patches of the INM around the capsid during budding. Here we report the properties of a point mutant of pUL34 (Q163A) that fails to induce gross changes in nuclear architecture or redistribution of lamin A/C. The UL34(Q163A) mutant shows a roughly 100-fold defect in single-step growth, and it forms small plaques. This mutant has a defect in nuclear egress, and furthermore, it fails to disrupt nuclear shape or cause observable displacement of lamin A/C despite retaining the ability to recruit the pUS3 and PKC protein kinases and to mediate phosphorylation of emerin. Extragenic suppressors of the UL34(Q163A) phenotype were isolated, and all of them carry a single mutation of arginine 229 to leucine in UL31. Surprisingly, although this UL31 mutation largely restores virus replication, it does not correct the lamina disruption defect, suggesting that, in Vero cells, changes in nuclear shape and gross displacements of lamin A/C may facilitate but are unnecessary for nuclear egress. IMPORTANCE Herpesvirus nuclear egress is an essential and conserved process that requires close association of the viral capsid with the inner nuclear membrane and budding of the capsid into that membrane. Access to the nuclear membrane and tight curvature of that membrane are thought to require disruption of the nuclear lamina that underlies the inner nuclear membrane, and consistent with this idea, herpesvirus infection induces biochemical and architectural changes at the nuclear membrane. The significance of the nuclear membrane architectural changes is poorly characterized. The results presented here address that deficiency in our understanding and show that a combination of mutations in two of the viral nuclear egress factors results in a failure to accomplish at least two components of lamina disruption while still allowing relatively efficient viral replication, suggesting that changes in nuclear shape and displacement of lamins are not necessary for herpes simplex virus 1 (HSV-1) nuclear egress.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Adrian R. Wilkie ◽  
Jessica L. Lawler ◽  
Donald M. Coen

ABSTRACTHerpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes.IMPORTANCEThe mechanisms underlying herpesvirus nuclear egress have not been fully determined. In particular, how newly assembled capsids move to the inner nuclear membrane for envelopment is uncertain and controversial. In this study, we show that HCMV, an important human pathogen, induces actin filaments in the nuclei of infected cells and that an inhibitor of nuclear F-actin impairs nuclear egress and capsid localization toward the nuclear periphery. Herpesviruses are widespread pathogens that cause or contribute to an array of human diseases. A better understanding of how herpesvirus capsids traffic in the nucleus may uncover novel targets for antiviral intervention and elucidate aspects of the nuclear cytoskeleton, about which little is known.


2009 ◽  
Vol 84 (4) ◽  
pp. 2110-2121 ◽  
Author(s):  
Ken Sagou ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.


2002 ◽  
Vol 83 (5) ◽  
pp. 1005-1012 ◽  
Author(s):  
P. Dal Monte ◽  
S. Pignatelli ◽  
N. Zini ◽  
N. M. Maraldi ◽  
E. Perret ◽  
...  

Human cytomegalovirus (HCMV) UL53 belongs to a family of conserved herpesvirus genes. In this work, the expression and localization of the UL53 gene product was analysed. Results obtained showed that pUL53 is a new structural protein. In infected human fibroblasts, pUL53 localizes in cytoplasmic perinuclear granular formations together with other structural viral proteins. In the nucleus, pUL53 forms patches at the nuclear periphery and co-localizes with lamin B at the internal nuclear membrane level. Immunoelectron microscopy studies have disclosed that nuclear pseudo-inclusions are labelled, whereas nucleocapsid formations within the intranuclear skein are negative. Furthermore, the mature virus particle maintains pUL53 at its tegumental level. These data suggest that pUL53 could be involved either in nucleocapsid maturation or in the egress of nucleocapsids from the nucleus to the cytoplasm through the nuclear membrane, a role compatible with the function hypothesized for UL31, its positional homologue in herpes simplex virus type 1.


2011 ◽  
Vol 92 (12) ◽  
pp. 2734-2745 ◽  
Author(s):  
Melanie Ott ◽  
Georg Tascher ◽  
Sarah Haßdenteufel ◽  
Richard Zimmermann ◽  
Jürgen Haas ◽  
...  

Release of herpes simplex virus type 1 (HSV-1) nucleocapsids from the host nucleus relies on the nuclear egress complex consisting of the two essential proteins pUL34 and pUL31. The cytoplasmically exposed N-terminal region of pUL34 interacts with pUL31, while a hydrophobic region followed by a short luminal part mediates membrane association. Based on its domain organization, pUL34 was postulated to be a tail-anchor (TA) protein. We performed a coupled in vitro transcription/translation assay to show that membrane insertion of pUL34 occurs post-translationally. Transient transfection and localization experiments in mammalian cells were combined with HSV-1 bacterial artificial chromosome mutagenesis to reveal the functional properties of the essential pUL34 TA. Our data show that a minimal tail length of 15 residues is sufficient for nuclear envelope targeting and pUL34 function. Permutations of the pUL34 TA with orthologous regions of human cytomegalovirus pUL50 or Epstein–Barr virus pBFRF1 as well as the heterologous HSV-1 TA proteins pUL56 or pUS9 or the cellular TA proteins Bcl-2 and Vamp2 revealed that nuclear egress tolerates TAs varying in sequence and hydrophobicity, while a non-α-helical membrane anchor failed to complement the pUL34 function. In conclusion, this study provides the first mechanistic insights into the particular role of the TA of pUL34 in membrane curving and capsid egress from the host nucleus.


Sign in / Sign up

Export Citation Format

Share Document