scholarly journals Benchmarking Optimisation Methods for Model Selection and Parameter Estimation of Nonlinear Systems

Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 648-665
Author(s):  
Sina Safari ◽  
Julián Londoño Monsalve

Characterisation and quantification of nonlinearities in the engineering structures include selecting and fitting a good mathematical model to a set of experimental vibration data with significant nonlinear features. These tasks involve solving an optimisation problem where it is difficult to choose a priori the best optimisation technique. This paper presents a systematic comparison of ten optimisation methods used to select the best nonlinear model and estimate its parameters through nonlinear system identification. The model selection framework fits the structure’s equation of motions using time-domain dynamic response data and takes into account couplings due to the presence of the nonlinearities. Three benchmark problems are used to evaluate the performance of two families of optimisation methods: (i) deterministic local searches and (ii) global optimisation metaheuristics. Furthermore, hybrid local–global optimisation methods are examined. All benchmark problems include a free play nonlinearity commonly found in mechanical structures. Multiple performance criteria are considered based on computational efficiency and robustness, that is, finding the best nonlinear model. Results show that hybrid methods, that is, the multi-start strategy with local gradient-based Levenberg–Marquardt method and the particle swarm with Levenberg–Marquardt method, lead to a successful selection of nonlinear models and an accurate estimation of their parameters within acceptable computational times.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 597
Author(s):  
Kun Miao ◽  
Qian Feng ◽  
Wei Kuang

The particle swarm optimization algorithm (PSO) is a widely used swarm-based natural inspired optimization algorithm. However, it suffers search stagnation from being trapped into a sub-optimal solution in an optimization problem. This paper proposes a novel hybrid algorithm (SDPSO) to improve its performance on local searches. The algorithm merges two strategies, the static exploitation (SE, a velocity updating strategy considering inertia-free velocity), and the direction search (DS) of Rosenbrock method, into the original PSO. With this hybrid, on the one hand, extensive exploration is still maintained by PSO; on the other hand, the SE is responsible for locating a small region, and then the DS further intensifies the search. The SDPSO algorithm was implemented and tested on unconstrained benchmark problems (CEC2014) and some constrained engineering design problems. The performance of SDPSO is compared with that of other optimization algorithms, and the results show that SDPSO has a competitive performance.


Author(s):  
Karl Kunisch ◽  
Philip Trautmann

AbstractIn this work we discuss the reconstruction of cardiac activation instants based on a viscous Eikonal equation from boundary observations. The problem is formulated as a least squares problem and solved by a projected version of the Levenberg–Marquardt method. Moreover, we analyze the well-posedness of the state equation and derive the gradient of the least squares functional with respect to the activation instants. In the numerical examples we also conduct an experiment in which the location of the activation sites and the activation instants are reconstructed jointly based on an adapted version of the shape gradient method from (J. Math. Biol. 79, 2033–2068, 2019). We are able to reconstruct the activation instants as well as the locations of the activations with high accuracy relative to the noise level.


Sign in / Sign up

Export Citation Format

Share Document