scholarly journals Evaluation of TMPA Satellite Precipitation in Driving VIC Hydrological Model over the Upper Yangtze River Basin

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3230
Author(s):  
Bin Zhu ◽  
Yuhan Huang ◽  
Zengxin Zhang ◽  
Rui Kong ◽  
Jiaxi Tian ◽  
...  

Although the Tropical Rainfall Measurement Mission (TRMM) has come to an end, the evaluation of TRMM satellite precipitation is still of great significance for the improvement of the Global Precipitation Measurement (GPM). In this paper, the hydrological utility of TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 RTV7/V7 precipitation products was evaluated using the variable infiltration capacity (VIC) hydrological model in the upper Yangtze River basin. The main results show that (1) TMPA 3B42V7 had a reliable performance in precipitation estimation compared with the gauged precipitation on both spatial and temporal scales over the upper Yangtze River basin. Although TMPA 3B42V7 slightly underestimated precipitation, TMPA 3B42RTV7 significantly overestimated precipitation at daily and monthly time scales; (2) the simulated runoff by the VIC hydrological model showed a high correlation with the gauged runoff and lower bias at daily and monthly time scales. The Nash–Sutcliffe coefficient of efficiency (NSCE) value was as high as 0.85, the relative bias (RB) was −6.36% and the correlation coefficient (CC) was 0.93 at the daily scale; (3) the accuracy of the 3B42RTV7-driven runoff simulation had been greatly improved by using the hydrological calibration parameters obtained from 3B42RTV7 compared with that of gauged precipitation. A lower RB (14.38% vs. 66.58%) and a higher CC (0.87 vs. 0.85) and NSCE (0.71 vs. −0.92) can be found at daily time scales when we use satellite data instead of gauged precipitation data to calibrate the VIC model. However, the performance of the 3B42V7-driven runoff simulation did not improve in the same operation accordingly. The cause might be that the 3B42V7 satellite products have been adjusted by gauged precipitation. This study suggests that it might be better to calibrate the parameters using satellite data in hydrological simulations, especially for unadjusted satellite data. This study is not only helpful for understanding the assessment of multi-satellite precipitation products in large-scale and complex areas in the upper reaches of the Yangtze River, but also can provide a reference for the hydrological utility of the satellite precipitation products in other river basins of the world.

2013 ◽  
Vol 45 (4-5) ◽  
pp. 603-614 ◽  
Author(s):  
C. Corbari ◽  
M. Mancini ◽  
Z. Su ◽  
J. Li

Application of hydrological models for water resources management at large continental river basins is often limited by the scarcity of in situ meteorological forcing data. Remote sensing information provides an alternative to in situ data, with observations that are, in some cases, at higher spatial and temporal resolutions than those available from traditional ground sources. In this work, the water balance equation is solved using precipitation retrieved from Tropical Rainfall Measuring Mission, water storage from Gravity Recovery and Climate Experiment satellite data and ground discharge. Evapotranspiration (ET) is then computed as a residual term of the water balance. Satellite data are compared with ground data to understand to what extent remote sensing observations can be used to improve estimates of the terrestrial water balance at regional scale. ET estimates are also compared with the ET computed from a detailed distributed energy water balance model and with the ET product from the Moderate Resolution Imaging Spectroradiometer Global Evapotranspiration Project. These analyses are performed for the Upper Yangtze River basin (China) in the framework of NRSCC-ESA DRAGON-2 Programme.


2013 ◽  
Vol 10 (5) ◽  
pp. 866-872 ◽  
Author(s):  
Xiao-guo Wang ◽  
Bo Zhu ◽  
Ke-ke Hua ◽  
Yong Luo ◽  
Jian Zhang ◽  
...  

2013 ◽  
Vol 43 (2) ◽  
pp. 163-165 ◽  
Author(s):  
Jinming Wu ◽  
Lei Li ◽  
Hao Du ◽  
Hui Zhang ◽  
Chengyou Wang ◽  
...  

2011 ◽  
Vol 27 (1) ◽  
pp. 59-75 ◽  
Author(s):  
Yongfeng He ◽  
Jianwei Wang ◽  
Sovan Lek ◽  
Wenxuan Cao ◽  
Sithan Lek-Ang

2016 ◽  
Vol 141 (3) ◽  
pp. 533-546 ◽  
Author(s):  
Buda Su ◽  
Jinlong Huang ◽  
Xiaofan Zeng ◽  
Chao Gao ◽  
Tong Jiang

Sign in / Sign up

Export Citation Format

Share Document