scholarly journals A Novel Hybrid Approach Based on Cellular Automata and a Digital Elevation Model for Rapid Flood Assessment

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1311
Author(s):  
Obaja Triputera Wijaya ◽  
Tsun-Hua Yang

An efficient inundation model is necessary for emergency flood responses during storm events. Cellular automata (CA)-based flood models have been proven to produce rapid results while maintaining a certain degree of accuracy. However, the need for computational resources dramatically increases when the number of grid cells increases. Digital elevation model (DEM)-based models generate results even faster, but the simplified governing equations within the models fail to reflect temporal flood evolution. To achieve rapid flood modeling while maintaining model simplicity, a novel two-dimensional hybrid inundation model (HIM) was developed by combining the CA- and DEM-based concepts. Given the temporal flood evolution generated by the CA concept, final finer-scale predictions were obtained by applying the DEM-based concept. The performance of this model was compared to those of widely used, physically based hydraulic models using three UK Environment Agency (EA) benchmark test cases. The HIM yielded consistent prediction results but was faster than the CA-based model. Finally, a comparison was made against flood observations, and the overall root mean squared error (RMSE) for flood depth was 0.388–0.400 m. Considering the uncertainty in the observed flood depths, the HIM shows promising potential to serve as an intermediate tool for emergency response in practical cases.

2019 ◽  
Vol 11 (15) ◽  
pp. 1767 ◽  
Author(s):  
Francesca Pasquetti ◽  
Monica Bini ◽  
Andrea Ciampalini

The aim of this paper is to evaluate the usefulness of TanDEM-X DEM (digital elevation model) for remote geomorphological analysis in Argentinian Patagonia. The use of a DEM with appropriate resolution and coverage might be very helpful and advantageous in vast and hardly accessible areas. TanDEM-X DEM could represent an unprecedented opportunity to identify geomorphological features because of its global coverage, ~12 m spatial resolution and low cost. In this regard, we assessed the vertical accuracy of TanDEM-X DEM through comparison with Differential Global Positioning System (DGPS) datasets collected in two areas of the Patagonia Region during a field survey; we then investigated different types of landforms by creating the elevation profiles. The comparison indicates a high agreement between TanDEM-X DEM and reference values, with a mean absolute vertical error (MAE) of 0.53 m, and a root mean squared error (RMSE) of 0.73 m. The results of landform analysis show an appropriate spatial resolution to detect different features such as beach ridges, which are impossible to delineate with other lower resolution DEMs. For these reasons, TanDEM-X DEM constitutes a useful tool for detailed geomorphological analyses in Argentinian Patagonia.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document