scholarly journals Energy Storage for Peak Shaving in a Microgrid in the Context of Brazilian Time-of-Use Rate

Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 16
Author(s):  
Rafael S. Salles ◽  
A. C. Zambroni de Souza ◽  
Paulo F. Ribeiro

The advance of the distributed generation in Brazil makes it essential to investigate the applications and transformations that the use of these new arrangements may entail. The use of non-centralized generation technologies associated with energy storage is interesting for several sectors of the energy market, even if the market is in the process of maturing these technologies. In the context of the time-of-use rate, these changes have allowed the consumer to use strategies to save energy bill costs, especially when its moment of most considerable consumption coincides with that of the highest tariff. In this paper, a Battery Energy Storage System (BESS) is used to perform commercial peak load reduction in a microgrid in connected mode. The microgrid also has a Photovoltaic (PV) Generator Farm as Renewable Energy Sources (RES) to provide load consumption and also to assist BESS in the peak shaving operation. The modeling and simulation of the system are performed by MATLAB/Simulink. The analysis demonstrates that the peak load reduction produces the expected financial benefits under a Brazilian time-of-use rate known as White Rate, in addition to carrying out the operation in a manner consistent with the technique from an electrical point of view. The software Homer Grid validates the potential savings. Thus, the results showed that the use of energy storage associated with renewable generation under a peak shaving strategy allows greater freedom for the consumer in the face of costs with main grid purchases.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3358 ◽  
Author(s):  
Karl Stein ◽  
Moe Tun ◽  
Marc Matsuura ◽  
Richard Rocheleau

In response to increasing integration of renewable energy sources on electric grid systems, battery energy storage systems (BESSs) are being deployed world-wide to provide grid services, including fast frequency regulation. Without mitigating technologies, such as BESSs, highly variable renewables can cause operational and reliability problems on isolated grids. Prior to the deployment of a BESS, an electric utility company will typically perform modeling to estimate cost benefits and determine grid impacts. While there may be a comparison of grid operations before and after BESS installation, passive monitoring typically does not provide information needed to tune the BESS such that the desired services are maintained, while also minimizing the cycling of the BESS. This paper presents the results of testing from a live grid using a method that systematically characterizes the performance of a BESS. The method is sensitive enough to discern how changes in tuning parameters effect both grid service and the cycling of the BESS. This paper discusses the application of this methodology to a 1 MW BESS regulating the entire island of Hawaii (180 MW peak load) in-situ. Significant mitigation of renewable volatility was demonstrated while minimizing BESS cycling.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2048 ◽  
Author(s):  
Rodrigo Martins ◽  
Holger Hesse ◽  
Johanna Jungbauer ◽  
Thomas Vorbuchner ◽  
Petr Musilek

Recent attention to industrial peak shaving applications sparked an increased interest in battery energy storage. Batteries provide a fast and high power capability, making them an ideal solution for this task. This work proposes a general framework for sizing of battery energy storage system (BESS) in peak shaving applications. A cost-optimal sizing of the battery and power electronics is derived using linear programming based on local demand and billing scheme. A case study conducted with real-world industrial profiles shows the applicability of the approach as well as the return on investment dependence on the load profile. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, peak-power tariff, and battery aging. This underlines the need for a general mathematical optimization approach to efficiently tackle the challenge of peak shaving using an energy storage system. The case study also compares the applicability of yearly and monthly billing schemes, where the highest load of the year/month is the base for the price per kW. The results demonstrate that batteries in peak shaving applications can shorten the payback period when used for large industrial loads. They also show the impacts of peak shaving variation on the return of investment and battery aging of the system.


Author(s):  
Guido Carpinelli ◽  
Fabio Mottola ◽  
Daniela Proto

Abstract This paper analyzes the influence of technology uncertainties on the sizing of battery systems. The sizing is based on the minimization of the costs incurred by the end customer and is performed considering demand response applications in the frame of time of use tariffs. The randomness of i) battery round trip efficiency, ii) life time duration, iii) unit costs related to battery capacity, power conversion system, operation and maintenance and replacement is taken into account in order to identify the most convenient solution from an economic and technical point of view. Based on the load requests of actual industrial and residential loads, numerical applications have been performed. The results provided useful information regarding the influence uncertainties have in the choice of a battery energy storage system.


Energy ◽  
2020 ◽  
Vol 196 ◽  
pp. 117084 ◽  
Author(s):  
Moslem Uddin ◽  
M.F. Romlie ◽  
M.F. Abdullah ◽  
ChiaKwang Tan ◽  
GM Shafiullah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document